A central limit theorem for the stochastic heat equation

被引:41
|
作者
Huang, Jingyu [1 ]
Nualart, David [2 ]
Viitasaari, Lauri [3 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham, W Midlands, England
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
关键词
Stochastic heat equation; Central limit theorem; Malliavin calculus; Stein's method; CHAOTIC CHARACTER;
D O I
10.1016/j.spa.2020.07.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the one-dimensional stochastic heat equation driven by a multiplicative space-time white noise. We show that the spatial integral of the solution from -R to R converges in total variance distance to a standard normal distribution as R tends to infinity, after renormalization. We also show a functional version of this central limit theorem. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:7170 / 7184
页数:15
相关论文
共 50 条
  • [31] A spatial stochastic epidemic model: law of large numbers and central limit theorem
    S. Bowong
    A. Emakoua
    E. Pardoux
    Stochastics and Partial Differential Equations: Analysis and Computations, 2023, 11 : 31 - 105
  • [32] STOCHASTIC INTEGRAL REPRESENTATION OF THE L2 MODULUS OF BROWNIAN LOCAL TIME AND A CENTRAL LIMIT THEOREM
    Hu, Yaozhong
    Nualart, David
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 529 - 539
  • [33] ANOTHER LOOK INTO THE WONG-ZAKAI THEOREM FOR STOCHASTIC HEAT EQUATION
    Gu, Yu
    Tsai, Li-Cheng
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (05): : 3037 - 3061
  • [34] Central limit theorems for parabolic stochastic partial differential equations
    Chen, Le
    Khoshnevisan, Davar
    Nualart, David
    Pu, Fei
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (02): : 1052 - 1077
  • [35] THE STOCHASTIC HEAT EQUATION AS THE LIMIT OF A STIRRING DYNAMICS PERTURBED BY A VOTER MODEL
    Jara, Milton
    Landim, Claudio
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (6A): : 4163 - 4209
  • [36] A central limit theorem for operators
    Goncalves, Felipe
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (06) : 1585 - 1603
  • [37] THE CENTRAL LIMIT THEOREM FOR EIGENVALUES
    Aoun, Richard
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (02) : 859 - 873
  • [38] Simulating the central limit theorem
    Taylor, Marshall A.
    STATA JOURNAL, 2018, 18 (02): : 345 - 356
  • [39] Central limit theorem by moments
    Blacher, Rene
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (17) : 1647 - 1651
  • [40] Operators central limit theorem
    Bianucci, Marco
    CHAOS SOLITONS & FRACTALS, 2021, 148