Semigroup kernels, Poisson bounds, and holomorphic functional calculus

被引:119
作者
Duong, XT [1 ]
Robinson, DW [1 ]
机构
[1] AUSTRALIAN NATL UNIV,CTR MATH & APPLICAT,CANBERRA,ACT 0200,AUSTRALIA
基金
澳大利亚研究理事会;
关键词
D O I
10.1006/jfan.1996.0145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be the generator of a continuous holomorphic semigroup S whose action is determined by an integral kernel K on a scare of spaces L(p)(X; rho). Under mild geometric assumptions on (X, rho), we prove that if L has a bounded H-infinity-functional calculus on L(2)(X; rho) and K satisfies bounds typical for the Poisson kernel, then L has a bounded H-infinity-functional calculus on L(p)(X; rho) for each p is an element of [1, infinity]. Moreover, if (X, rho) is of polynomial type and K satisfies second-order Gaussian bounds, we establish criteria for L to have a bounded Hormander functional calculus or a bounded Davies-Helffer-Sjostrand functional calculus. (C) 1996 Academic Press, Inc.
引用
收藏
页码:89 / 128
页数:40
相关论文
共 22 条
  • [1] ALBRECHT D, P CTR MATH ITS APPL, V34, P77
  • [2] AMANN H., 1994, DIFFERENTIAL INTEGRA, V3, P613
  • [3] SEMIGROUPS AND RESOLVENTS OF BOUNDED VARIATION, IMAGINARY POWERS AND H-INFINITY FUNCTIONAL-CALCULUS
    BOYADZHIEV, K
    DELAUBENFELS, R
    [J]. SEMIGROUP FORUM, 1992, 45 (03) : 372 - 384
  • [4] BURNS RJ, 1994, J OPERAT THEOR, V30, P165
  • [5] CHRIST M, 1990, CBMS REGIONAL C SERI
  • [6] Coifman RR., 1971, Lect. Notes Math., DOI 10.1007/BFb0058946
  • [7] Banach space operators with a bounded H infinity functional calculus
    Cowling, M
    Doust, I
    McIntosh, A
    Yagi, A
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 : 51 - 89
  • [8] Davies E. B., 1989, CAMBRIDGE TRACTS MAT, V92
  • [9] L(P) SPECTRAL INDEPENDENCE AND L(1) ANALYTICITY
    DAVIES, EB
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 52 : 177 - 184
  • [10] THE FUNCTIONAL-CALCULUS
    DAVIES, EB
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 52 : 166 - 176