Automated defect detection tool for closed circuit television (cctv) inspected sewer pipelines

被引:77
作者
Hawari, Alaa [1 ]
Alamin, Mazen [1 ]
Alkadour, Firas [1 ]
Elmasry, Mohamed [2 ]
Zayed, Tarek [2 ]
机构
[1] Qatar Univ, Dept Civil & Architectural Engn, POB 2713, Doha, Qatar
[2] Concordia Univ, Dept Bldg Civil & Environm Engn, 1455 Blvd Maisonneuve W, Montreal, PQ H3G 1M8, Canada
关键词
Sewer pipelines; Defect detection; Non-destructive evaluation; CCTV inspection; Image processing; Sewer inspection; SURFACES;
D O I
10.1016/j.autcon.2018.01.004
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In sewer networks, the economic effects and costs that result from a pipeline failure are rising sharply. As a result, there is huge demand for inspection and rehabilitation of sewer pipelines. In addition to being inaccurate, current practices of sewer pipelines inspection are time consuming and may not keep up with the deterioration rates of the pipelines. This papers presents the development of an automated tool to detect some defects such as: cracks, deformation, settled deposits and joint displacement in sewer pipelines. The automated approach is dependent upon using image-processing techniques and several mathematical formulas to analyze output data from Closed Circuit Television (CCTV) camera images. The automated tool was able to detect cracks, displaced joints, ovality and settled deposits in pipelines using CCTV camera inspection output footage using two different datasets. To examine the performance of the proposed detection methodology, confusion matrices were constructed, in which true positives for crack, settled deposits and displaced joints were 74%, 53% and 65%. As for the ovality, all defects in the images were detected successfully. Although these values could indicate low performance, however the proposed methodology could be improved if additional images were used. Given that one inspection session can result in hundreds of CCTV camera footage, introducing an automated tool would help yield faster results. Additionally, given the subjective nature of evaluating the severity of defects, it would result in more systematic outputs since the current method rely heavily on the operator's experience.
引用
收藏
页码:99 / 109
页数:11
相关论文
共 21 条
  • [1] American National Standards Institute United States of America Standards Institute, 1988, AM NAT STAND TEL SYS
  • [2] [Anonymous], 2014, MATLAB STAT TOOLB RE
  • [3] [Anonymous], ACTIVE CONTOUR SEGME
  • [4] [Anonymous], PIP ASS CERT PROGR M
  • [5] Chernov N., 2009, ELLIPSE FIT TAUBIN M
  • [6] Haghighat M., 2017, GABOR FEATURE EXTRAC
  • [7] Automated defect detection in textured surfaces using optimal elliptical Gabor filters
    Hu, Guang-Hua
    [J]. OPTIK, 2015, 126 (14): : 1331 - 1340
  • [8] Khalifa I., 2013, INT J ADV COMPUT SC, V4, DOI DOI 10.14569/IJACSA.2013.041210
  • [9] Fat, Oil, and Grease Accumulation in Sewer Systems: Comprehensive Survey of Experiences of Scandinavian Municipalities
    Mattsson, Jonathan
    Hedstroem, Annelie
    Viklander, Maria
    Blecken, Godecke-Tobias
    [J]. JOURNAL OF ENVIRONMENTAL ENGINEERING, 2014, 140 (03)
  • [10] Automated detection of faults in wastewater pipes from CCTV footage by using Random Forests
    Myrans, Joshua
    Kapelan, Zoran
    Everson, Richard
    [J]. 12TH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS (HIC 2016) - SMART WATER FOR THE FUTURE, 2016, 154 : 36 - 41