Fake News Detection Using Machine Learning Ensemble Methods

被引:136
|
作者
Ahmad, Iftikhar [1 ]
Yousaf, Muhammad [1 ]
Yousaf, Suhail [1 ]
Ahmad, Muhammad Ovais [2 ]
机构
[1] Univ Engn & Technol, Dept Comp Sci & Informat Technol, Peshawar, Pakistan
[2] Karlstad Univ, Dept Math & Comp Sci, Karlstad, Sweden
关键词
Learning algorithms - Fake detection - Social networking (online) - Text processing - Machine learning;
D O I
10.1155/2020/8885861
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The advent of the World Wide Web and the rapid adoption of social media platforms (such as Facebook and Twitter) paved the way for information dissemination that has never been witnessed in the human history before. With the current usage of social media platforms, consumers are creating and sharing more information than ever before, some of which are misleading with no relevance to reality. Automated classification of a text article as misinformation or disinformation is a challenging task. Even an expert in a particular domain has to explore multiple aspects before giving a verdict on the truthfulness of an article. In this work, we propose to use machine learning ensemble approach for automated classification of news articles. Our study explores different textual properties that can be used to distinguish fake contents from real. By using those properties, we train a combination of different machine learning algorithms using various ensemble methods and evaluate their performance on 4 real world datasets. Experimental evaluation confirms the superior performance of our proposed ensemble learner approach in comparison to individual learners.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fake News Detection Using Ensemble Machine Learning
    Mohale, Potsane
    Leung, Wai Sze
    PROCEEDINGS OF THE 18TH EUROPEAN CONFERENCE ON CYBER WARFARE AND SECURITY (ECCWS 2019), 2019, : 777 - 784
  • [2] Multiclass Fake News Detection using Ensemble Machine Learning
    Kaliyar, Rohit Kumar
    Goswami, Anurag
    Narang, Pratik
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019), 2019, : 103 - 107
  • [3] Fake News Detection Using Machine Learning and Deep Learning Methods
    Saeed, Ammar
    Al Solami, Eesa
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2079 - 2096
  • [4] Fake News Detection on Social Media Using Ensemble Methods
    Ilyas, Muhammad Ali
    Rehman, Abdul
    Abbas, Assad
    Kim, Dongsun
    Naseem, Muhammad Tahir
    Allah, Nasro Min
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (03): : 4525 - 4549
  • [5] Detection of Online Fake News Using Blending Ensemble Learning
    Hansrajh, Arvin
    Adeliyi, Timothy T.
    Wing, Jeanette
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [6] Rapid detection of fake news based on machine learning methods
    Probierz, Barbara
    Stefanski, Piotr
    Kozak, Jan
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 2893 - 2902
  • [7] An Empirical Study on Fake News Detection System using Deep and Machine Learning Ensemble Techniques
    Divya, T., V
    Banik, Barnali Gupta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (12) : 143 - 150
  • [8] Fake News Detection: An Ensemble Learning Approach
    Agarwal, Arush
    Dixit, Akhil
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1178 - 1183
  • [9] Fake news detection on Pakistani news using machine learning and deep learning
    Kishwar, Azka
    Zafar, Adeel
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [10] Enhancing Information Integrity: Machine Learning Methods for Fake News Detection
    Sahu, Shruti
    Bansal, Poonam
    Kumari, Ritika
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 247 - 257