Comparison of Classifier Fusion Methods for Predicting Response to Anti HIV-1 Therapy

被引:37
作者
Altmann, Andre [1 ]
Rosen-Zvi, Michal [2 ]
Prosperi, Mattia [3 ]
Aharoni, Ehud [2 ]
Neuvirth, Hani [2 ]
Schuelter, Eugen [4 ]
Buech, Joachim [1 ]
Struck, Daniel [5 ]
Peres, Yardena [6 ]
Incardona, Francesca [7 ]
Soennerborg, Anders [8 ]
Kaiser, Rolf [4 ]
Zazzi, Maurizio [9 ]
Lengauer, Thomas [1 ]
机构
[1] Max Planck Inst Informat, Saarbrucken, Germany
[2] IBM Res Lab Haifa, Machine Learning Grp, Haifa, Israel
[3] Univ Roma TRE, Dept Comp Sci & Automat, Rome, Italy
[4] Univ Cologne, Inst Virol, D-5000 Cologne, Germany
[5] CRP Sante, Retrovirol Lab, Luxembourg, Luxembourg
[6] IBM Res Lab, Hlth Care & Life Sci Grp, Haifa, Israel
[7] Informa SRL, Rome, Italy
[8] Karolinska Inst, Dept Med, Div Infect Dis, Stockholm, Sweden
[9] Univ Siena, Dept Mol Biol, I-53100 Siena, Italy
来源
PLOS ONE | 2008年 / 3卷 / 10期
关键词
D O I
10.1371/journal.pone.0003470
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Analysis of the viral genome for drug resistance mutations is state-of-the-art for guiding treatment selection for human immunodeficiency virus type 1 (HIV-1)-infected patients. These mutations alter the structure of viral target proteins and reduce or in the worst case completely inhibit the effect of antiretroviral compounds while maintaining the ability for effective replication. Modern anti-HIV-1 regimens comprise multiple drugs in order to prevent or at least delay the development of resistance mutations. However, commonly used HIV-1 genotype interpretation systems provide only classifications for single drugs. The EuResist initiative has collected data from about 18,500 patients to train three classifiers for predicting response to combination antiretroviral therapy, given the viral genotype and further information. In this work we compare different classifier fusion methods for combining the individual classifiers. Principal Findings: The individual classifiers yielded similar performance, and all the combination approaches considered performed equally well. The gain in performance due to combining methods did not reach statistical significance compared to the single best individual classifier on the complete training set. However, on smaller training set sizes (200 to 1,600 instances compared to 2,700) the combination significantly outperformed the individual classifiers (p<0.01; paired one-sided Wilcoxon test). Together with a consistent reduction of the standard deviation compared to the individual prediction engines this shows a more robust behavior of the combined system. Moreover, using the combined system we were able to identify a class of therapy courses that led to a consistent underestimation (about 0.05 AUC) of the system performance. Discovery of these therapy courses is a further hint for the robustness of the combined system. Conclusion: The combined EuResist prediction engine is freely available at http://engine.euresist.org.
引用
收藏
页数:9
相关论文
共 25 条
  • [1] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [2] Altmann A, 2007, ANTIVIR THER, V12, P169
  • [3] [Anonymous], 1999, PHD THESIS
  • [4] [Anonymous], INF FUSION
  • [5] Estimating HIV evolutionary pathways and the genetic barrier to drug resistance
    Beerenwinkel, N
    Däumer, M
    Sing, T
    Rahnenführer, J
    Lengauer, T
    Selbig, J
    Hoffmann, D
    Kaiser, R
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2005, 191 (11) : 1953 - 1960
  • [6] Learning multiple evolutionary pathways from cross-sectional data
    Beerenwinkel, N
    Rahnenführer, J
    Däumer, M
    Hoffmann, D
    Kaiser, R
    Selbig, J
    Lengauer, T
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2005, 12 (06) : 584 - 598
  • [7] Geno2pheno:: estimating phenotypic drug resistance from HIV-1 genotypes
    Beerenwinkel, N
    Däumer, M
    Oette, M
    Korn, K
    Hoffmann, D
    Kaiser, R
    Lengauer, T
    Selbig, J
    Walter, H
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (13) : 3850 - 3855
  • [8] An introduction to ROC analysis
    Fawcett, Tom
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (08) : 861 - 874
  • [9] Antiretroviral treatment of adult HIV infection - 2008 recommendations of the International AIDS Society USA panel
    Hammer, Scott M.
    Eron, Joseph J., Jr.
    Reiss, Peter
    Schooley, Robert T.
    Thompson, Melanie A.
    Walmsley, Sharon
    Cahn, Pedro
    Fischl, Margaret A.
    Gatell, Jose M.
    Hirsch, Martin S.
    Jacobsen, Donna M.
    Montaner, Julio S. G.
    Richman, Douglas D.
    Yeni, Patrick G.
    Volberding, Paul A.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2008, 300 (05): : 555 - 570
  • [10] OPTIC FLOW-FIELD SEGMENTATION AND MOTION ESTIMATION USING A ROBUST GENETIC PARTITIONING ALGORITHM
    HUANG, Y
    PALANIAPPAN, K
    ZHUANG, XH
    CAVANAUGH, JE
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (12) : 1177 - 1190