The enhanced hydrogen storage of micronanostructured hybrids of Mg(BH4)2-carbon nanotubes

被引:37
|
作者
Han, Mo [1 ]
Zhao, Qing [1 ]
Zhu, Zhiqang [1 ]
Hu, Yuxiang [1 ]
Tao, Zhanliang [1 ]
Chen, Jun [1 ,2 ]
机构
[1] Nankai Univ, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
[2] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300071, Peoples R China
关键词
WALLED CARBON NANOTUBES; AMMONIA BORANE; MAGNESIUM BOROHYDRIDE; LITHIUM BOROHYDRIDE; DEHYDROGENATION; CATALYSTS; DESORPTION; RELEASE; NANOPARTICLES; HYDROLYSIS;
D O I
10.1039/c5nr05108h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the facile preparation of micro-nanostructured hybrids of Mg (BH4),-carbon nanotubes (denoted as MBH-CNTs) and their enhanced hydrogen desorption/absorption performance. The hybrids with Mg(BH4)2 loadings of 25 wt%, 50 wt% and 75 wt% are synthesized through a one-step solvent method by adjusting the ratios of Mg(BH4)(2) and CNTs. The optimized MBH CNTs with 50 wt% Mg(BH,), exhibit a nanosized layer coating of Mg(BH4)(2) with the thickness of 2-6 nm on the surface of CNTs. The MBH CNTs with 50 wt% Mg(BH4)2 start to release hydrogen at 76 degrees C, which shows a significant decrease of about 200 degrees C compared with that of pure Mg(BH4)(2) (about 292 degrees C). Furthermore, 3.79 wt/0 of H2 can be desorbed from this sample within 10 min at the peak release temperature of 117 degrees C. Meanwhile, the dehydrogenated MBH CNTs could take up 2.5 wt% of H-2 at 350 degrees C under the hydrogen pressure of 10 MPa. The high chemical activity of nanosized Mg(BH4)(2) and the catalytic effect of CNTs synergistically promote reversible hydrogen storage. The simple synthesis process and enhanced hydrogen desorption/ absorption of MBH CNT hybrids shed light on the utilization of Mg(BH,), on CNTs as efficient hydrogen storage materials.
引用
收藏
页码:18305 / 18311
页数:7
相关论文
共 50 条
  • [1] Reversible hydrogen storage in Mg(BH4)2/carbon nanocomposites
    Yan, Yigang
    Au, Yuen S.
    Rentsch, Daniel
    Remhof, Arndt
    de Jongh, Petra E.
    Zuettel, Andreas
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (37) : 11177 - 11183
  • [2] Enhanced hydrogen reversibility of nanoconfined LiBH4-Mg(BH4)2
    Javadian, Payam
    Jensen, Torben R.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (18) : 9871 - 9876
  • [3] Enhanced hydrogen desorption from Mg(BH4)2 by combining nanoconfinement and a Ni catalyst
    Wahab, M. Abdul
    Jia, Yi
    Yang, Dongjiang
    Zhao, Huijun
    Yao, Xiangdong
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (10) : 3471 - 3478
  • [4] Hydrogen Desorption in Mg(BH4)2-Ca(BH4)2 System
    Dematteis, Erika M.
    Baricco, Marcello
    ENERGIES, 2019, 12 (17)
  • [5] Hydrogen storage properties and mechanisms of a Mg(BH4)2•2NH3-NaAlH4 combination system
    Li, You
    Liu, Yongfeng
    Zhang, Xin
    Yang, Yaxiong
    Gao, Mingxia
    Pan, Hongge
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (04) : 2788 - 2796
  • [6] Effect of Al on the hydrogen storage properties of Mg(BH4)2
    Jiang, Jianjun
    Wei, Jia
    Leng, Haiyan
    Li, Qian
    Chou, Kuo-Chih
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) : 10919 - 10925
  • [7] Hydrogen storage properties and mechanisms of the Mg(BH4)2-NaAlH4 system
    Liu, Yongfeng
    Yang, Yanjing
    Zhou, Yifan
    Zhang, Yu
    Gao, Mingxia
    Pan, Hongge
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (22) : 17137 - 17145
  • [8] Enhanced low temperature hydrogen desorption properties and mechanism of Mg(BH4)2 composited with 2D MXene
    Zheng, Jiaguang
    Cheng, Hao
    Xiao, Xuezhang
    Chen, Man
    Chen, Lixin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (44) : 24292 - 24300
  • [9] Synergistic effect of sub-5 nm Fe nanoparticles supported on nanoporous carbon for catalyzing hydrogen storage properties of Mg(BH4)2
    Wahab, Md A.
    Karim, Mohammad R.
    Al-Mubaddel, Fahad S.
    Alnaser, Ibrahim A.
    Will, Geoffrey
    Abdala, Ahmed
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [10] Enhanced reversible hydrogen storage in LiBH4-Mg(BH4)2 composite with V2C-Mxene
    Zhang, Qingbo
    Zheng, Jiaguang
    Xia, Ao
    Lv, Meiling
    Ma, Zhenxuan
    Liu, Meijia
    CHEMICAL ENGINEERING JOURNAL, 2024, 487