Uniqueness and nonexistence of complete spacelike hypersurfaces, Calabi-Bernstein type results and applications to Einstein-de Sitter and steady state type spacetimes

被引:6
作者
Araujo, Jogli G. [1 ]
de Lima, Henrique F. [2 ]
Gomes, Wallace F. [2 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Matemat, BR-52171900 Recife, PE, Brazil
[2] Univ Fed Campina Grande, Dept Matemat, Campina Grande, Paraiba, Brazil
来源
REVISTA MATEMATICA COMPLUTENSE | 2021年 / 34卷 / 03期
关键词
GRW spacetimes; Einstein-de Sitter spacetime; Steady state-type spacetimes; Complete spacelike hypersurfaces; Future mean curvature; Entire spacelike graphs; Calabi-Bernstein type results; CONSTANT MEAN-CURVATURE; GENERALIZED MAXIMUM-PRINCIPLES; RIGIDITY; GRAPHS;
D O I
10.1007/s13163-020-00375-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the geometry of complete spacelike hypersurfaces (immersed) in a generalized Robertson-Walker spacetime - I xf M-n. Under suitable constraints on the sectional curvature of the Riemannian fiber M-n, on the warping function f and on the future mean curvature (that is, the mean curvature function with respect to the future-pointing Gauss map of the spacelike hypersurface), we are able to prove that such a spacelike hypersurface must be a slice {t} x M-n of the ambient spacetime. Nonexistence and Calabi-Bernstein type results concerning entire spacelike graphs constructed over the Riemannian fiber M-n are also obtained, as well as applications to the Einstein-de Sitter and steady state type spacetimes are given. Our approach is based on the so-called Omori-Yau's generalized maximum principle and on certain integrability properties due to Yau.
引用
收藏
页码:653 / 673
页数:21
相关论文
共 34 条
[1]  
Albujer AL, 2009, P AM MATH SOC, V137, P711
[2]   New examples of entire maximal graphs in H2 x R1 [J].
Albujer, Alma L. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (04) :456-462
[3]   Complete spacelike hypersurfaces in a Robertson-Walker spacetime [J].
Albujer, Alma L. ;
Camargo, Fernanda E. C. ;
de Lima, Henrique F. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2011, 151 :271-282
[4]   Space-like hypersurfaces with functionally bounded mean curvature in Lorentzian warped products and generalized Calabi-Bernstein-type problems [J].
Aledo, Juan A. ;
Rubio, Rafael M. ;
Salamanca, Juan J. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) :849-868
[5]   Integral formulae for spacelike hypersurfaces in conformally stationary spacetimes and applications [J].
Alías, LJ ;
Brasil, A ;
Colares, AG .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 :465-488
[6]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[7]   Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes [J].
Alias, Luis J. ;
Colares, A. Gervasio .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 :703-729
[8]   On the rigidity of complete spacelike hypersurfaces immersed in a generalized Robertson-Walker spacetime [J].
Alias, Luis J. ;
Colares, Antonio Gervasio ;
de Lima, Henrique F. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (02) :195-217
[9]   Spacelike hypersurfaces of constant higher order mean curvature in generalized Robertson-Walker spacetimes [J].
Alias, Luis J. ;
Impera, Debora ;
Rigoli, Marco .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 152 :365-383
[10]  
[Anonymous], 1973, LARGE SCALE STRUCTUR