The DAF-3 Smad protein antagonizes TGF-beta-related receptor signaling in the Caenorhabditis elegans dauer pathway

被引:169
作者
Patterson, GI [1 ]
Koweek, A [1 ]
Wong, A [1 ]
Liu, YX [1 ]
Ruvkun, G [1 ]
机构
[1] HARVARD UNIV,SCH MED,DEPT MOL BIOL,MASSACHUSETTS GEN HOSP,DEPT GENET,BOSTON,MA 02114
关键词
diapause; neuroendocrine; TGF-beta signaling;
D O I
10.1101/gad.11.20.2679
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Signals from TGF-beta superfamily receptors are transduced to the nucleus by Smad proteins, which transcriptionally activate target genes. In Caenorhabditis elegans, defects in a TGF-beta-related pathway cause a reversible developmental arrest and metabolic shift at the dauer larval stage. Null mutations in daf-3 suppress mutations in genes encoding this TGF-beta signal, its receptors, and associated Smad signal transduction proteins. daf-3 encodes a Smad protein that is most closely related to mammalian DPC4, and is expressed throughout development in many of the tissues that are remodeled during dauer development. DAF-4, the type II TGF-beta receptor in this pathway, is also expressed in remodeled tissues. These data suggest that the DAF-7 signal from sensory neurons acts as a neuroendocrine signal throughout the body to directly regulate developmental and metabolic shifts in tissues that are remodeled during dauer formation. A full-length functional DAF-3/GFP fusion protein is predominantly cytoplasmic, and this localization is independent of activity of the upstream TGF-beta-related pathway. However, this fusion protein is associated with chromosomes in mitotic cells, suggesting that DAF-3 binds DNA directly or indirectly. DAF-3 transgenes also interfere with dauer formation, perhaps attributable to a dosage effect. A truncated DAF-3/GFP fusion protein that is predominantly nuclear interferes with dauer formation, implying a role for DAF-3 in the nucleus. These data suggest that DAF-7 signal transduction antagonizes or modifies DAF-3 Smad activity in the nucleus to induce reproductive development; when DAF-7 signals are disabled, unmodified DAF-3 Smad activity mediates dauer arrest and its associated metabolic shift. Therefore, daf-3 is unique in that it is antagonized, rather than activated, by a TGF-beta pathway.
引用
收藏
页码:2679 / 2690
页数:12
相关论文
共 49 条
[1]   TGF-BETA RECEPTORS AND ACTIONS [J].
ATTISANO, L ;
WRANA, JL ;
LOPEZCASILLAS, F ;
MASSAGUE, J .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 1994, 1222 (01) :71-80
[2]   A novel mesoderm inducer, Madr2 functions in the activin signal transduction pathway [J].
Baker, JC ;
Harland, RM .
GENES & DEVELOPMENT, 1996, 10 (15) :1880-1889
[3]   CONTROL OF LARVAL DEVELOPMENT BY CHEMOSENSORY NEURONS IN CAENORHABDITIS-ELEGANS [J].
BARGMANN, CI ;
HORVITZ, HR .
SCIENCE, 1991, 251 (4998) :1243-1246
[4]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[5]   A transcriptional partner for MAD proteins in TGF-beta signalling [J].
Chen, X ;
Rubock, MJ ;
Whitman, M .
NATURE, 1996, 383 (6602) :691-696
[6]  
CHEN X, 1997, IN PRESS NATURE
[7]   Regulation of transforming growth factor beta- and activin-induced transcription by mammalian Mad proteins [J].
Chen, Y ;
Lebrun, JJ ;
Vale, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :12992-12997
[8]   THE DAF-4 GENE ENCODES A BONE MORPHOGENETIC PROTEIN-RECEPTOR CONTROLLING C-ELEGANS DAUER LARVA DEVELOPMENT [J].
ESTEVEZ, M ;
ATTISANO, L ;
WRANA, JL ;
ALBERT, PS ;
MASSAGUE, J ;
RIDDLE, DL .
NATURE, 1993, 365 (6447) :644-649
[9]   THE UNC-86 GENE-PRODUCT COUPLES CELL LINEAGE AND CELL IDENTITY IN C-ELEGANS [J].
FINNEY, M ;
RUVKUN, G .
CELL, 1990, 63 (05) :895-905
[10]  
*GEN COMP GROUP, 1994, PROGR MAN WISC PACK