ELEMENTS OF LARGE ORDER IN PRIME FINITE FIELDS

被引:13
作者
Chang, Mei-Chu [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
multiplicative order; multiplicative group; finite fields; additive combinatorics; ROOTS; EQUATIONS;
D O I
10.1017/S0004972712000810
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given f(x, y) is an element of Z[x, y] with no common components with x(a) - y(b) and x(a)y(b) - 1, we prove that for p sufficiently large, with C(f) exceptions, the solutions (x, y) is an element of (F) over bar (p) x (F) over bar (p) of f(x, y) = 0 satisfy ord(x) + ord(y) > c(log p/ log log p)(1/2), where c is a constant and ord(r) is the order of r in the multiplicative group (F) over bar (p)*. Moreover, for most p < N, N being a large number, we prove that, with C(f) exceptions, ord(x) + ord(y) > p(1/4+epsilon(p)), where epsilon(p) is an arbitrary function tending to 0 when p goes to infinity.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 18 条
  • [1] Torsion points on curves and common divisors of ak-1 and bk-1
    Ailon, N
    Rudnick, ZE
    [J]. ACTA ARITHMETICA, 2004, 113 (01) : 31 - 38
  • [2] [Anonymous], 1992, IDEALS VARIETIES ALG, DOI DOI 10.1007/978-1-4757-2181-2
  • [3] An upper bound for the GCD of an-1 and bn-1
    Bugeaud, Y
    Corvaja, P
    Zannier, U
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2003, 243 (01) : 79 - 84
  • [4] CONWAY A., 1976, Acta Arith., V30, P229, DOI DOI 10.4064/AA-30-3-229-240
  • [5] Corvaja P., 2008, ATTI ACCAD NA 9 SFMN, V19, P73
  • [6] On sums of roots of unity
    Dvornicich, R
    Zannier, U
    [J]. MONATSHEFTE FUR MATHEMATIK, 2000, 129 (02): : 97 - 108
  • [7] Evertse JH, 1999, ACTA ARITH, V89, P45
  • [8] The distribution of integers with a divisor in a given interval
    Ford, Kevin
    [J]. ANNALS OF MATHEMATICS, 2008, 168 (02) : 367 - 433
  • [9] Sharp estimates for the arithmetic Nullstellensatz
    Krick, T
    Pardo, LM
    Sombra, M
    [J]. DUKE MATHEMATICAL JOURNAL, 2001, 109 (03) : 521 - 598
  • [10] Lang S., 1983, FUNDAMENTALS DIOPHAN, P200