On properties of several refinements of optimal solutions in linear programming

被引:0
作者
Estévez-Fernández, A [1 ]
Fiestras-Janeiro, MG
机构
[1] Univ Santiago de Compostela, Fac Matemat, Santiago De Compostela, Spain
[2] Univ Vigo, Fac Ciencias Econ & Empresariais, Vigo, Spain
关键词
linear programming; linear complementarity; perfect solutions; proper solutions; weakly proper solutions;
D O I
10.1023/B:JOTA.0000041730.73603.54
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we investigate the properties of the optimal solutions obtained when we translate the concepts of perfect, proper, and weakly proper solutions from the context of linear complementarity to the framework of linear programming.
引用
收藏
页码:41 / 62
页数:22
相关论文
共 8 条
[1]   The concept of proper solution in linear programming [J].
Fiestras-Janeiro, MG ;
García-Jurado, I ;
Puerto, J .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 106 (03) :511-525
[2]  
Mangasarian O. L., 1979, Mathematics of Operations Research, V4, P268, DOI 10.1287/moor.4.3.268
[3]   LEXICOGRAPHIC OPTIMALITY IN THE MULTIPLE OBJECTIVE LINEAR-PROGRAMMING - THE NUCLEOLAR SOLUTION [J].
MARCHI, E ;
OVIEDO, JA .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1992, 57 (03) :355-359
[4]  
MOHAN SR, 1998, 9878 TILB U CTR EC R
[5]  
Myerson RB, 1978, INT J GAME THEORY, V7, P73, DOI DOI 10.1007/BF01753236
[6]   THE NUCLEOLUS OF A MATRIX GAME AND OTHER NUCLEOLI [J].
POTTERS, JAM ;
TIJS, SH .
MATHEMATICS OF OPERATIONS RESEARCH, 1992, 17 (01) :164-174
[7]  
Selten R., 1975, International Journal of Game Theory, V4, P25, DOI 10.1007/BF01766400
[8]  
van Damme E., 1991, STABILITY PERFECTION