REACH: A program for coarse-grained biomolecular simulation

被引:5
作者
Moritsugu, Kei [1 ,2 ]
Smith, Jeremy C. [2 ]
机构
[1] RIKEN, Computat Sci Res Program, Wako, Saitama 3510198, Japan
[2] Univ Tennessee, Ctr Biophys Mol, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
REACH; Coarse-grained force field; Molecular Dynamics (MD) simulation; Elastic network model (ENM); SINGLE-PARAMETER; NUCLEIC-ACIDS; PROTEINS; MOTIONS;
D O I
10.1016/j.cpc.2009.01.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
REACH (Eealistic Extension Algorithm via Covariance Hessian) is a program package for residue-scale coarse-grained biomolecular simulation. The program calculates the force constants of a residue-scale elastic network model in single-domain proteins using the variance-covariance matrix obtained from atomistic molecular dynamics simulation. Secondary-structure dependence of the force constants is integrated. The method involves self-consistent, direct mapping of atomistic simulation results onto a coarse-grained force field in an efficient automated procedure without requiring iterative fits and avoiding system dependence. Program summary Program title: REACH Catalogue identifier: AEDA_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 42 244 No. of bytes in distributed program, including test data, etc.: 3682118 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: x86 PC Operating system: GNU/Linux, SUSE and Red Hat RAM: Depends on the system size to be calculated Word size: 32 or 64 bits Classification: 3 External routines: LAPACK, BLAS Nature of problem: A direct calculation of force field for residue-scale coarse-grained biomolecular simulation derived from atomistic molecular dynamics trajectory. Solution method: A variance-covariance matrix and the associated Hessian (second-derivative) matrix are calculated from an atomistic molecular dynamics trajectory of single-domain protein internal motion and the off-diagonal Hessian matrix is fitted to that of a residue-scale elastic network model. The resulting force constants for the residue pair interactions are expressed as model functions as a function of pairwise distance. Running time: Depends on the system size and the number of MD trajectory frames used. The test run provided with the distribution takes only a few seconds to execute. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1188 / 1195
页数:8
相关论文
共 15 条
[1]   Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential [J].
Bahar, I ;
Atilgan, AR ;
Erman, B .
FOLDING & DESIGN, 1997, 2 (03) :173-181
[2]   Coarse-grained modeling of the actin filament derived from atomistic-scale simulations [J].
Chu, JW ;
Voth, GA .
BIOPHYSICAL JOURNAL, 2006, 90 (05) :1572-1582
[3]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[4]   A CONSISTENT EMPIRICAL POTENTIAL FOR WATER-PROTEIN INTERACTIONS [J].
HERMANS, J ;
BERENDSEN, HJC ;
VANGUNSTEREN, WF ;
POSTMA, JPM .
BIOPOLYMERS, 1984, 23 (08) :1513-1518
[5]  
Hinsen K, 1998, PROTEINS, V33, P417, DOI 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO
[6]  
2-8
[7]   Nonlinear temperature dependence of the crystal structure of lysozyme: correlation between coordinate shifts and thermal factors [J].
Joti, Y ;
Nakasako, M ;
Kidera, A ;
Go, N .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2002, 58 :1421-1432
[8]   DICTIONARY OF PROTEIN SECONDARY STRUCTURE - PATTERN-RECOGNITION OF HYDROGEN-BONDED AND GEOMETRICAL FEATURES [J].
KABSCH, W ;
SANDER, C .
BIOPOLYMERS, 1983, 22 (12) :2577-2637
[9]   MOLSCRIPT - A PROGRAM TO PRODUCE BOTH DETAILED AND SCHEMATIC PLOTS OF PROTEIN STRUCTURES [J].
KRAULIS, PJ .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1991, 24 :946-950
[10]   AN ALL-ATOM EMPIRICAL ENERGY FUNCTION FOR THE SIMULATION OF NUCLEIC-ACIDS [J].
MACKERELL, AD ;
WIORKIEWICZKUCZERA, J ;
KARPLUS, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (48) :11946-11975