A Note on Uniformly Bounded Cocycles into Finite Von Neumann Algebras

被引:0
作者
Boutonnet, Remi [1 ]
Roydor, Jean [1 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2018年 / 61卷 / 02期
关键词
Borel cocycle; von Neumann algebra;
D O I
10.4153/CMB-2017-078-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short proof of a result of T. Bates and T. Giordano stating that any uniformly bounded Borel cocycle into a finite von Neumann algebra is cohomologous to a unitary cocycle. We also point out a separability issue in their proof. Our approach is based on the existence of a non-positive curvature metric on the positive cone of a finite von Neumann algebra.
引用
收藏
页码:236 / 239
页数:4
相关论文
共 8 条
[1]  
Abramenko P, 2008, GRAD TEXTS MATH, V248, P1
[2]   Cohomology of property T groupoids and applications [J].
Anantharaman-Delaroche, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :977-1013
[3]   Nonpositively curved metric in the positive cone of a finite von Neumann algebra [J].
Andruchow, E. ;
Larotonda, G. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 :205-218
[4]   Bounded cocycles on finite Von Neumann algebras [J].
Bates, T ;
Giordano, T .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (06) :743-750
[5]   Unitarization of uniformly bounded subgroups in finite von Neumann algebras [J].
Miglioli, Martin .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 :1264-1266
[6]  
VASILESCU FH, 1974, ACTA SCI MATH, V36, P189
[7]  
ZIMMER RJ, 1977, J LOND MATH SOC, V15, P155
[8]  
ZIMMER RJ, 1984, MONOGRAPHS MATH, V0081