Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon

被引:81
作者
Mi, X. [1 ]
Cady, J. V. [1 ,3 ]
Zajac, D. M. [1 ]
Stehlik, J. [1 ,4 ]
Edge, L. F. [2 ]
Petta, J. R. [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] HRL Labs LLC, 3011 Malibu Canyon Rd, Malibu, CA 90265 USA
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[4] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
美国国家科学基金会;
关键词
SUPERCONDUCTING QUBITS; CAVITY; SPIN; STORAGE;
D O I
10.1063/1.4974536
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate a hybrid device architecture where the charge states in a double quantum dot (DQD) formed in a Si/SiGe heterostructure are read out using an on-chip superconducting microwave cavity. A quality factor Q = 5400 is achieved by selectively etching away regions of the quantum well and by reducing photon losses through low-pass filtering of the gate bias lines. Homodyne measurements of the cavity transmission reveal DQD charge stability diagrams and a charge-cavity coupling rate g(c)/2 pi = 23 MHz. These measurements indicate that electrons trapped in a Si DQD can be effectively coupled to microwave photons, potentially enabling coherent electron-photon interactions in silicon. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 34 条
  • [1] Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics
    Bronn, Nicholas T.
    Liu, Yanbing
    Hertzberg, Jared B.
    Corcoles, Antonio D.
    Houck, Andrew A.
    Gambetta, Jay M.
    Chow, Jerry M.
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (17)
  • [2] Cavity Photons as a Probe for Charge Relaxation Resistance and Photon Emission in a Quantum Dot Coupled to Normal and Superconducting Continua
    Bruhat, L. E.
    Viennot, J. J.
    Dartiailh, M. C.
    Desjardins, M. M.
    Kontos, T.
    Cottet, A.
    [J]. PHYSICAL REVIEW X, 2016, 6 (02):
  • [3] Bruhat L. E., ARXIV161205214
  • [4] Dispersive readout of valley splittings in cavity-coupled silicon quantum dots
    Burkard, Guido
    Petta, J. R.
    [J]. PHYSICAL REVIEW B, 2016, 94 (19)
  • [5] Fabrication and characterization of aluminum airbridges for superconducting microwave circuits
    Chen, Zijun
    Megrant, A.
    Kelly, J.
    Barends, R.
    Bochmann, J.
    Chen, Yu
    Chiaro, B.
    Dunsworth, A.
    Jeffrey, E.
    Mutus, J. Y.
    O'Malley, P. J. J.
    Neill, C.
    Roushan, P.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Cleland, A. N.
    Martinis, John M.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (05)
  • [6] Charge Number Dependence of the Dephasing Rates of a Graphene Double Quantum Dot in a Circuit QED Architecture
    Deng, Guang-Wei
    Wei, Da
    Johansson, J. R.
    Zhang, Miao-Lei
    Li, Shu-Xiao
    Li, Hai-Ou
    Cao, Gang
    Xiao, Ming
    Tu, Tao
    Guo, Guang-Can
    Jiang, Hong-Wen
    Nori, Franco
    Guo, Guo-Ping
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (12)
  • [7] Spin-based Quantum Dot Quantum Computing in Silicon
    Eriksson, Mark A.
    Friesen, Mark
    Coppersmith, Susan N.
    Joynt, Robert
    Klein, Levente J.
    Slinker, Keith
    Tahan, Charles
    Mooney, P. M.
    Chu, J. O.
    Koester, S. J.
    [J]. QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 133 - 146
  • [8] Quantum dot admittance probed at microwave frequencies with an on-chip resonator
    Frey, T.
    Leek, P. J.
    Beck, M.
    Faist, J.
    Wallraff, A.
    Ensslin, K.
    Ihn, T.
    Buettiker, M.
    [J]. PHYSICAL REVIEW B, 2012, 86 (11)
  • [9] Dipole Coupling of a Double Quantum Dot to a Microwave Resonator
    Frey, T.
    Leek, P. J.
    Beck, M.
    Blais, A.
    Ihn, T.
    Ensslin, K.
    Wallraff, A.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (04)
  • [10] Spins in few-electron quantum dots
    Hanson, R.
    Kouwenhoven, L. P.
    Petta, J. R.
    Tarucha, S.
    Vandersypen, L. M. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2007, 79 (04) : 1217 - 1265