Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon

被引:83
作者
Mi, X. [1 ]
Cady, J. V. [1 ,3 ]
Zajac, D. M. [1 ]
Stehlik, J. [1 ,4 ]
Edge, L. F. [2 ]
Petta, J. R. [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] HRL Labs LLC, 3011 Malibu Canyon Rd, Malibu, CA 90265 USA
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[4] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
美国国家科学基金会;
关键词
SUPERCONDUCTING QUBITS; CAVITY; SPIN; STORAGE;
D O I
10.1063/1.4974536
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate a hybrid device architecture where the charge states in a double quantum dot (DQD) formed in a Si/SiGe heterostructure are read out using an on-chip superconducting microwave cavity. A quality factor Q = 5400 is achieved by selectively etching away regions of the quantum well and by reducing photon losses through low-pass filtering of the gate bias lines. Homodyne measurements of the cavity transmission reveal DQD charge stability diagrams and a charge-cavity coupling rate g(c)/2 pi = 23 MHz. These measurements indicate that electrons trapped in a Si DQD can be effectively coupled to microwave photons, potentially enabling coherent electron-photon interactions in silicon. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 34 条
[1]   Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics [J].
Bronn, Nicholas T. ;
Liu, Yanbing ;
Hertzberg, Jared B. ;
Corcoles, Antonio D. ;
Houck, Andrew A. ;
Gambetta, Jay M. ;
Chow, Jerry M. .
APPLIED PHYSICS LETTERS, 2015, 107 (17)
[2]   Cavity Photons as a Probe for Charge Relaxation Resistance and Photon Emission in a Quantum Dot Coupled to Normal and Superconducting Continua [J].
Bruhat, L. E. ;
Viennot, J. J. ;
Dartiailh, M. C. ;
Desjardins, M. M. ;
Kontos, T. ;
Cottet, A. .
PHYSICAL REVIEW X, 2016, 6 (02)
[3]  
Bruhat L. E., ARXIV161205214
[4]   Dispersive readout of valley splittings in cavity-coupled silicon quantum dots [J].
Burkard, Guido ;
Petta, J. R. .
PHYSICAL REVIEW B, 2016, 94 (19)
[5]   Fabrication and characterization of aluminum airbridges for superconducting microwave circuits [J].
Chen, Zijun ;
Megrant, A. ;
Kelly, J. ;
Barends, R. ;
Bochmann, J. ;
Chen, Yu ;
Chiaro, B. ;
Dunsworth, A. ;
Jeffrey, E. ;
Mutus, J. Y. ;
O'Malley, P. J. J. ;
Neill, C. ;
Roushan, P. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
APPLIED PHYSICS LETTERS, 2014, 104 (05)
[6]   Charge Number Dependence of the Dephasing Rates of a Graphene Double Quantum Dot in a Circuit QED Architecture [J].
Deng, Guang-Wei ;
Wei, Da ;
Johansson, J. R. ;
Zhang, Miao-Lei ;
Li, Shu-Xiao ;
Li, Hai-Ou ;
Cao, Gang ;
Xiao, Ming ;
Tu, Tao ;
Guo, Guang-Can ;
Jiang, Hong-Wen ;
Nori, Franco ;
Guo, Guo-Ping .
PHYSICAL REVIEW LETTERS, 2015, 115 (12)
[7]   Spin-based Quantum Dot Quantum Computing in Silicon [J].
Eriksson, Mark A. ;
Friesen, Mark ;
Coppersmith, Susan N. ;
Joynt, Robert ;
Klein, Levente J. ;
Slinker, Keith ;
Tahan, Charles ;
Mooney, P. M. ;
Chu, J. O. ;
Koester, S. J. .
QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) :133-146
[8]   Quantum dot admittance probed at microwave frequencies with an on-chip resonator [J].
Frey, T. ;
Leek, P. J. ;
Beck, M. ;
Faist, J. ;
Wallraff, A. ;
Ensslin, K. ;
Ihn, T. ;
Buettiker, M. .
PHYSICAL REVIEW B, 2012, 86 (11)
[9]   Dipole Coupling of a Double Quantum Dot to a Microwave Resonator [J].
Frey, T. ;
Leek, P. J. ;
Beck, M. ;
Blais, A. ;
Ihn, T. ;
Ensslin, K. ;
Wallraff, A. .
PHYSICAL REVIEW LETTERS, 2012, 108 (04)
[10]   Spins in few-electron quantum dots [J].
Hanson, R. ;
Kouwenhoven, L. P. ;
Petta, J. R. ;
Tarucha, S. ;
Vandersypen, L. M. K. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (04) :1217-1265