Martini 3 Coarse-Grained Force Field for Carbohydrates

被引:52
作者
Grunewald, Fabian [1 ,2 ]
Punt, Mats H. [1 ,2 ]
Jefferys, Elizabeth E. [5 ]
Vainikka, Petteri A. [1 ,2 ]
Koenig, Melanie [1 ,2 ]
Virtanen, Valtteri [6 ]
Meyer, Travis A. [7 ]
Pezeshkian, Weria [8 ]
Gormley, Adam J. [7 ]
Karonen, Maarit [6 ]
Sansom, Mark S. P. [5 ]
Souza, Paulo C. T. [3 ,4 ]
Marrink, Siewert J. [1 ,2 ]
机构
[1] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[3] Univ Lyon, CNRS, UMR 5086, Mol Microbiol & Struct Biochem, F-69367 Lyon, France
[4] Univ Lyon, F-69367 Lyon, France
[5] Univ Oxford, Dept Biochem, Oxford OX13QU, England
[6] Univ Turku, Dept Chem, Nat Chem Res Grp, Turku 20014, Finland
[7] State Univ New Jersey, Dept Biomed Engn, Piscataway, NJ 08854 USA
[8] Univ Copenhagen, Niels bohr Int Acad, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
关键词
MOLECULAR-DYNAMICS SIMULATIONS; OSMOTIC-PRESSURE; AQUEOUS-SOLUTIONS; CELLULOSE; MODEL; SACCHARIDES; MECHANISM; GLYCAM06; COMMON;
D O I
10.1021/acs.jctc.2c00757
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Martini 3 force field is a full reparametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance, it allows for a more accurate description of condensed phase systems. In the present work, we develop a consistent strategy to parametrize carbohydrate molecules accurately within the framework of Martini 3. In particular, we develop a canonical mapping scheme which decomposes arbitrarily large carbohydrates into a limited number of fragments. Bead types for these fragments have been assigned by matching physicochemical properties of mono-and disaccharides. In addition, guidelines for assigning bonds, angles, and dihedrals were developed. These guidelines enable a more accurate description of carbohydrate conformations than in the Martini 2 force field. We show that models obtained with this approach are able to accurately reproduce osmotic pressures of carbohydrate water solutions. Furthermore, we provide evidence that the model differ-entiates correctly the solubility of the polyglucoses dextran (water-soluble) and cellulose (water insoluble but soluble in ionic liquids). Finally, we demonstrate that the new building blocks can be applied to glycolipids. We show they are able to reproduce membrane properties and induce binding of peripheral membrane proteins. These test cases demonstrate the validity and transferability of our approach.
引用
收藏
页码:7555 / 7569
页数:15
相关论文
共 100 条
[71]   Membrane invagination induced by Shiga toxin B-subunit: from molecular structure to tube formation [J].
Pezeshkian, W. ;
Hansen, A. G. ;
Johannes, L. ;
Khandelia, H. ;
Shillcock, J. C. ;
Kumar, P. B. S. ;
Ipsen, J. H. .
SOFT MATTER, 2016, 12 (23) :5164-5171
[72]   Computational Approaches to Explore Bacterial Toxin Entry into the Host Cell [J].
Pezeshkian, Weria ;
Shillcock, Julian C. ;
Ipsen, John H. .
TOXINS, 2021, 13 (07)
[73]   Backmapping triangulated surfaces to coarse-grained membrane models [J].
Pezeshkian, Weria ;
Konig, Melanie ;
Wassenaar, Tsjerk A. ;
Marrink, Siewert J. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[74]   Cholera toxin B subunit induces local curvature on lipid bilayers [J].
Pezeshkian, Weria ;
Nabo, Lina J. ;
Ipsen, John H. .
FEBS OPEN BIO, 2017, 7 (11) :1638-1645
[75]   Mechanism of Shiga Toxin Clustering on Membranes [J].
Pezeshkian, Weria ;
Gao, Haifei ;
Arumugam, Senthil ;
Becken, Ulrike ;
Bassereau, Patricia ;
Florent, Jean-Claude ;
Ipsen, John Hjort ;
Johannes, Ludger ;
Shillcock, Julian C. .
ACS NANO, 2017, 11 (01) :314-324
[76]   Development of a Force Field for the Simulation of Single-Chain Proteins and Protein-Protein Complexes [J].
Piana, Stefano ;
Robustelli, Paul ;
Tan, Dazhi ;
Chen, Songela ;
Shaw, David E. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (04) :2494-2507
[77]   The path forward for biofuels and biomaterials [J].
Ragauskas, AJ ;
Williams, CK ;
Davison, BH ;
Britovsek, G ;
Cairney, J ;
Eckert, CA ;
Frederick, WJ ;
Hallett, JP ;
Leak, DJ ;
Liotta, CL ;
Mielenz, JR ;
Murphy, R ;
Templer, R ;
Tschaplinski, T .
SCIENCE, 2006, 311 (5760) :484-489
[78]  
Rini J.M., 2010, Handbook of Cell Signaling, P85, DOI DOI 10.1016/B978-0-12-374145-5.00013-9
[79]   Intermolecular nonbonded contact distances in organic crystal structures: Comparison with distances expected from van der Waals radii [J].
Rowland, RS ;
Taylor, R .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (18) :7384-7391
[80]  
Rubinstein M., 2003, POLYM PHYS