Martini 3 Coarse-Grained Force Field for Carbohydrates

被引:51
作者
Grunewald, Fabian [1 ,2 ]
Punt, Mats H. [1 ,2 ]
Jefferys, Elizabeth E. [5 ]
Vainikka, Petteri A. [1 ,2 ]
Koenig, Melanie [1 ,2 ]
Virtanen, Valtteri [6 ]
Meyer, Travis A. [7 ]
Pezeshkian, Weria [8 ]
Gormley, Adam J. [7 ]
Karonen, Maarit [6 ]
Sansom, Mark S. P. [5 ]
Souza, Paulo C. T. [3 ,4 ]
Marrink, Siewert J. [1 ,2 ]
机构
[1] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[3] Univ Lyon, CNRS, UMR 5086, Mol Microbiol & Struct Biochem, F-69367 Lyon, France
[4] Univ Lyon, F-69367 Lyon, France
[5] Univ Oxford, Dept Biochem, Oxford OX13QU, England
[6] Univ Turku, Dept Chem, Nat Chem Res Grp, Turku 20014, Finland
[7] State Univ New Jersey, Dept Biomed Engn, Piscataway, NJ 08854 USA
[8] Univ Copenhagen, Niels bohr Int Acad, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
关键词
MOLECULAR-DYNAMICS SIMULATIONS; OSMOTIC-PRESSURE; AQUEOUS-SOLUTIONS; CELLULOSE; MODEL; SACCHARIDES; MECHANISM; GLYCAM06; COMMON;
D O I
10.1021/acs.jctc.2c00757
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Martini 3 force field is a full reparametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance, it allows for a more accurate description of condensed phase systems. In the present work, we develop a consistent strategy to parametrize carbohydrate molecules accurately within the framework of Martini 3. In particular, we develop a canonical mapping scheme which decomposes arbitrarily large carbohydrates into a limited number of fragments. Bead types for these fragments have been assigned by matching physicochemical properties of mono-and disaccharides. In addition, guidelines for assigning bonds, angles, and dihedrals were developed. These guidelines enable a more accurate description of carbohydrate conformations than in the Martini 2 force field. We show that models obtained with this approach are able to accurately reproduce osmotic pressures of carbohydrate water solutions. Furthermore, we provide evidence that the model differ-entiates correctly the solubility of the polyglucoses dextran (water-soluble) and cellulose (water insoluble but soluble in ionic liquids). Finally, we demonstrate that the new building blocks can be applied to glycolipids. We show they are able to reproduce membrane properties and induce binding of peripheral membrane proteins. These test cases demonstrate the validity and transferability of our approach.
引用
收藏
页码:7555 / 7569
页数:15
相关论文
共 100 条
[21]   Molecular Dynamics of Solids at Constant Pressure and Stress Using Anisotropic Stochastic Cell Rescaling [J].
Del Tatto, Vittorio ;
Raiteri, Paolo ;
Bernetti, Mattia ;
Bussi, Giovanni .
APPLIED SCIENCES-BASEL, 2022, 12 (03)
[22]   Osmotic properties of carbohydrate aqueous solutions [J].
Ebrahimi, Nosaibah ;
Sadeghi, Rahmat .
FLUID PHASE EQUILIBRIA, 2016, 417 :171-180
[23]   THE DOUBLE CUBIC LATTICE METHOD - EFFICIENT APPROACHES TO NUMERICAL-INTEGRATION OF SURFACE-AREA AND VOLUME AND TO DOT SURFACE CONTOURING OF MOLECULAR ASSEMBLIES [J].
EISENHABER, F ;
LIJNZAAD, P ;
ARGOS, P ;
SANDER, C ;
SCHARF, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (03) :273-284
[24]   Molecular recognition of saccharides by proteins.: Insights on the origin of the carbohydrate-aromatic interactions [J].
Fernández, MD ;
Cañada, FJ ;
Jiménez-Barbero, J ;
Cuevas, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (20) :7379-7386
[25]   Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments [J].
Frederix, Pim W. J. M. ;
Patmanidis, Ilias ;
Marrink, Siewert J. .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (10) :3470-3489
[26]   VISCOUS PROPERTIES AND MOLECULAR CHARACTERIZATION OF ENZYMATICALLY SIZE-CONTROLLED OLIGODEXTRANS IN AQUEOUS-SOLUTIONS [J].
GASCIOLLI, V ;
CHOPLIN, L ;
PAUL, F ;
MONSAN, P .
JOURNAL OF BIOTECHNOLOGY, 1991, 19 (2-3) :193-202
[27]   PHYSICOCHEMICAL STUDIES OF OLIGODEXTRAN .1. MOLECULAR WEIGHT DEPENDENCE OF INTRINSIC VISCOSITY, PARTIAL SPECIFIC COMPRESSIBILITY AND HYDRATED WATER [J].
GEKKO, K ;
NOGUCHI, H .
BIOPOLYMERS, 1971, 10 (09) :1513-&
[28]   Efficient Algorithms for Langevin and DPD Dynamics [J].
Goga, N. ;
Rzepiela, A. J. ;
de Vries, A. H. ;
Marrink, S. J. ;
Berendsen, H. J. C. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (10) :3637-3649
[29]   Cellulose-Builder: A toolkit for building crystalline structures of cellulose [J].
Gomes, Thiago C. F. ;
Skaf, Munir S. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2012, 33 (14) :1338-1346
[30]  
Grunewald Fabian, 2022, Zenodo, DOI 10.5281/ZENODO.6531922