Heating processes in plasmonic resonances: a non-linear temperature dependent permittivity model

被引:0
|
作者
Alabastri, Alessandro [1 ]
De Angelis, Francesco [1 ]
Zaccaria, Remo Proietti [1 ]
机构
[1] Ist Italiano Tecnol, I-16163 Genoa, Italy
来源
NANOPHOTONIC MATERIALS XI | 2014年 / 9161卷
关键词
Thermoplasmonics; plasmon resonance; heating processes; electric permittivity; ELECTRON-ELECTRON SCATTERING; METALLIC NANOSTRUCTURES; GOLD NANOPARTICLES; SURFACE; COMPRESSION; SIZE;
D O I
10.1117/12.2066155
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Heating processes in plasmonics are essential every time the interaction with electromagnetic fields induces dissipation within metallic nanostructures. In particular the capability to predict the final temperature reached by a system (e.g. an ensemble of nanoparticles within a host medium) can be crucial when dealing with electronic, medical or chemical applications. Here we present a dispersive model of the dielectric function of a metallic medium which depends on temperature. Since temperature, in turn, depends on the intensity of the electromagnetic source and on the optical response of the medium itself, the model expresses non-linearity features. The model, which does not require any fitting parameter, can be utilized whenever the impact of temperature on the optical response of a system needs to be clarified and/ or when non-linearities might play a major role.
引用
收藏
页数:5
相关论文
共 48 条
  • [1] Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature
    Alabastri, Alessandro
    Tuccio, Salvatore
    Giugni, Andrea
    Toma, Andrea
    Liberale, Carlo
    Das, Gobind
    De Angelis, Francesco
    Di Fabrizio, Enzo
    Zaccaria, Remo Proietti
    MATERIALS, 2013, 6 (11) : 4879 - 4910
  • [2] NON-LINEAR DYNAMICS IN APPLIED PHYSICOCHEMICAL PROCESSES
    Cupic, Zeljko D.
    HEMIJSKA INDUSTRIJA, 2009, 63 (05) : 445 - 454
  • [3] A quantum description of linear, and non-linear optical interactions in arrays of plasmonic nanoparticles
    Arabahmadi, Ehsan
    Ahmadi, Zabihollah
    Rashidian, Bizhan
    JOURNAL OF MODERN OPTICS, 2018, 65 (10) : 1235 - 1244
  • [4] An analytical non-linear hinge model for predicting the fracture processes of cementitious composites
    Qing, Longbang
    Shi, Xinyu
    Mu, Ru
    Lu, Yanxing
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2019, 104
  • [5] Non-linear compact model for FinFETs output characteristics
    Ahmed, Umer F.
    Ahmed, Muhammad Mansoor
    Memon, Qamar D.
    IET CIRCUITS DEVICES & SYSTEMS, 2019, 13 (08) : 1249 - 1254
  • [6] Conformation dependent non-linear impedance response of DNA in nanofluidic device
    Pungetmongkol, Porpin
    Mogi, Katsuo
    Yamamoto, Takatoki
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2015, : 1163 - 1166
  • [7] Investigation of linear and non-linear properties of oxide glass-metal nanoparticle composites by the strong-permittivity-fluctuation theory
    Naseri, Fatemeh
    Shahmirzaee, Hossein
    OPTICS COMMUNICATIONS, 2013, 309 : 134 - 138
  • [8] Effects of Optical Joule Heating in Metamaterial Absorber: A Non-Linear Recursive Feedback Optical-Thermodynamic Multiphysics Study
    In, Sungjun
    Park, Namkyoo
    9TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2015), 2015, : 121 - 123
  • [9] Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes
    Galtier, Mathieu N.
    Marini, Camille
    Wainrib, Gilles
    Jaeger, Herbert
    NEURAL NETWORKS, 2014, 56 : 10 - 21
  • [10] Investigating the equilibrium melting temperature of linear polyethylene using the non-linear Hoffman-Weeks approach
    Mohammadi, H.
    Vincent, M.
    Marand, H.
    POLYMER, 2018, 146 : 344 - 360