Eringen's nonlocal theories of beams accounting for moderate rotations

被引:109
作者
Reddy, J. N. [1 ]
El-Borgi, Sami [2 ,3 ]
机构
[1] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ Qatar, Mech Engn Program, Doha, Qatar
[3] Univ Carthage, Tunisia Polytech Sch, Appl Mech & Syst Res Lab, La Marsa 2078, Tunisia
关键词
Beams; Eringen's differential model; Material length scales; Finite element models; Numerical results; CARBON NANOTUBES; VIBRATION ANALYSIS; THERMOELASTIC ANALYSIS; NONLINEAR-ANALYSIS; BUCKLING ANALYSIS; SMALL STRAIN; NANOBEAMS; MICROSTRUCTURE; ELASTICITY; FORMULATION;
D O I
10.1016/j.ijengsci.2014.05.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The primary objective of this paper is two-fold: (a) to formulate the governing equations of the Euler-Bernoulli and Timoshenko beams that account for moderate rotations (more than what is included in the conventional von Karman strains) and material length scales based on Eringen's nonlocal differential model, and (b) develop the nonlinear finite element models of the equations. The governing equations of the Euler-Bernoulli and Timoshenko beams are derived using the principle of virtual displacements, wherein the Eringen's nonlocal differential model and modified von Karman nonlinear strains are taken into account. Finite element models of the resulting equations are developed, and numerical results are presented for various boundary conditions, showing the effect of the nonlocal parameter on the deflections. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:159 / 177
页数:19
相关论文
共 88 条
  • [11] Catalan G, 2011, NAT MATER, V10, P963, DOI [10.1038/nmat3141, 10.1038/NMAT3141]
  • [12] The small length scale effect for a non-local cantilever beam: a paradox solved
    Challamel, N.
    Wang, C. M.
    [J]. NANOTECHNOLOGY, 2008, 19 (34)
  • [13] Challamel N., ARCH APPL M IN PRESS
  • [14] Tribological application of carbon nanotubes in a metal-based composite coating and composites
    Chen, WX
    Tu, JP
    Wang, LY
    Gan, HY
    Xu, ZD
    Zhang, XB
    [J]. CARBON, 2003, 41 (02) : 215 - 222
  • [15] Static and buckling analysis of functionally graded Timoshenko nanobeams
    Eltaher, M. A.
    Khairy, A.
    Sadoun, A. M.
    Omar, Fatema-Alzahraa
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 : 283 - 295
  • [16] Mechanical analysis of higher order gradient nanobeams
    Eltaher, M. A.
    Hamed, M. A.
    Sadoun, A. M.
    Mansour, A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 : 260 - 272
  • [17] Vibration analysis of Euler-Bernoulli nanobeams by using finite element method
    Eltaher, M. A.
    Alshorbagy, Amal E.
    Mahmoud, F. F.
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (07) : 4787 - 4797
  • [18] Free vibration analysis of functionally graded size-dependent nanobeams
    Eltaher, M. A.
    Emam, Samir A.
    Mahmoud, F. F.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7406 - 7420
  • [19] FRACTURE-MECHANICS OF FUNCTIONALLY GRADED MATERIALS
    ERDOGAN, F
    [J]. COMPOSITES ENGINEERING, 1995, 5 (07): : 753 - 770
  • [20] Eringen A. C., 2002, Nonlocal Continuum Field Theories