Product expansions of conformal characters

被引:19
作者
Eholzer, W [1 ]
Skoruppa, NP [1 ]
机构
[1] UNIV BORDEAUX 1,UFR MATH & INFORMAT,F-33405 TALENCE,FRANCE
关键词
D O I
10.1016/0370-2693(96)01154-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe several infinite series of rational conformal field theories whose conformal characters are modular units, i.e. which are modular functions having no zeros or poles in the upper complex half plane, and which thus possess simple product expansions. We conjecture that certain infinite series of rational models of Casimir W-algebras always have this property. Furthermore, we describe an algorithm which can be used to prove whether a modular function is a modular unit or not.
引用
收藏
页码:82 / 89
页数:8
相关论文
共 19 条
[11]  
EHOLZER W, DAMTP9662
[12]   CHARACTERS AND FUSION RULES FOR W-ALGEBRAS VIA QUANTIZED DRINFELD-SOKOLOV REDUCTION [J].
FRENKEL, E ;
KAC, V ;
WAKIMOTO, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (02) :295-328
[13]  
Hardy G., 1975, INTRO THEORY NUMBERS, V4
[14]  
Humphreys J E, 1972, INTRO LIE ALGEBRAS R, DOI DOI 10.1007/978-1-4612-6398-2
[15]  
Kac V.G, 1990, INFINITE DIMENSIONAL, Vthird, DOI DOI 10.1017/CBO9780511626234
[16]   FERMIONIC QUASI-PARTICLE REPRESENTATIONS FOR CHARACTERS OF (G(1))1X(G(1))1/(G(1))2 [J].
KEDEM, R ;
KLASSEN, TR ;
MCCOY, BM ;
MELZER, E .
PHYSICS LETTERS B, 1993, 304 (3-4) :263-270
[17]   PATH SPACES AND W-FUSION IN MINIMAL MODELS [J].
KELLENDONK, J ;
ROSGEN, M ;
VARNHAGEN, R .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (07) :1009-1023
[18]   NATURALITY IN CONFORMAL FIELD-THEORY [J].
MOORE, G ;
SEIBERG, N .
NUCLEAR PHYSICS B, 1989, 313 (01) :16-40
[19]  
Skoruppa N.-P., 1985, BONNER MATH SCHRIFTE, V159