A Parameter Estimation Method for Dynamic Computational Cognitive Models

被引:0
|
作者
Thilakarathne, Dilhan J. [1 ]
机构
[1] Vrije Univ Amsterdam, Agent Syst Res Grp, Amsterdam, Netherlands
来源
6TH ANNUAL INTERNATIONAL CONFERENCE ON BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES (BICA 2015) | 2015年 / 71卷
关键词
Parameter estimation; Particle swarm optimization; Constrain satisfaction; Cognitive modelling; PREDICTION;
D O I
10.1016/j.procs.2015.12.178
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A dynamic computational cognitive model can be used to explore a selected complex cognitive phenomenon by providing some features or patterns over time. More specifically, it can be used to simulate, analyse and explain the behaviour of such a cognitive phenomenon. It generates output data in the form of time series which can only be partially compared to empirical knowledge. This leads to a challenging problem to estimate values of the parameters of the model representing characteristics of a person. A parameter estimation approach for dynamic cognitive models is presented here by combining improved Particle Swarm Optimization (PSO) and Constraint Satisfaction (CS) methods. Having collected the key features of behaviour of a phenomenon, those are translated into a set of constraints with parameters that will be solved through an improved agent based PSO technique. Through this, within PSO each agent explores the complex search space while communicating the quality of a local parameter value vector relative to their current global best solution as a swarm (through cooperation and competition). This is performed in tournaments and results of each tournament are combined to address the premature convergence issue in PSO.
引用
收藏
页码:133 / 142
页数:10
相关论文
共 50 条
  • [1] Artificial neural networks for model identification and parameter estimation in computational cognitive models
    Rmus, Milena
    Pan, Ti-Fen
    Xia, Liyu
    Collins, Anne G. E.
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (05)
  • [2] Computational Methods for Parameter Estimation in Climate Models
    Villagran, Alejandro
    Huerta, Gabriel
    Jackson, Charles S.
    Sen, Mrinal K.
    BAYESIAN ANALYSIS, 2008, 3 (04): : 823 - +
  • [3] A SOFTWARE FOR PARAMETER ESTIMATION IN DYNAMIC MODELS
    Yuceer, M.
    Atasoy, I.
    Berber, R.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2008, 25 (04) : 813 - 821
  • [4] Review of computational parameter estimation methods for electrochemical models
    Miguel, E.
    Plett, Gregory L.
    Trimboli, M. Scott
    Oca, L.
    Iraola, U.
    Bekaert, E.
    JOURNAL OF ENERGY STORAGE, 2021, 44
  • [5] Identification of parameter correlations for parameter estimation in dynamic biological models
    Li, Pu
    Vu, Quoc Dong
    BMC SYSTEMS BIOLOGY, 2013, 7
  • [6] Parameter Estimation of Dynamic Beer Fermentation Models
    Zamudio Lara, Jesus Miguel
    Dewasme, Laurent
    Escoto, Hector Hernandez
    Vande Wouwer, Alain
    FOODS, 2022, 11 (22)
  • [7] PARAMETER-ESTIMATION IN DYNAMIC-MODELS
    LIU, LM
    TIAO, GC
    COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1980, 9 (05): : 501 - 517
  • [8] Parameter Inference for Computational Cognitive Models with Approximate Bayesian Computation
    Kangasraasio, Antti
    Jokinen, Jussi P. P.
    Oulasvirta, Antti
    Howes, Andrew
    Kaski, Samuel
    COGNITIVE SCIENCE, 2019, 43 (06)
  • [9] A New Method for Online Parameter Estimation of Hunt-Crossley Environment Dynamic Models
    Haddadi, Amir
    Hashtrudi-Zaad, Keyvan
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 981 - 986
  • [10] Computational issues in parameter estimation for stationary hidden Markov models
    Bulla, Jan
    Berzel, Andreas
    COMPUTATIONAL STATISTICS, 2008, 23 (01) : 1 - 18