Multi-feature Late Fusion for Image Tagging

被引:3
|
作者
Liu, Xi [1 ]
Liu, Rujie [1 ]
Cao, Qiong [1 ]
Li, Fei [1 ]
机构
[1] Fujitsu Res & Dev Ctr Co LTD, Beijing, Peoples R China
关键词
Late fusion; Image tagging; Multi-feature; Tag relevance; Low rank; ANNOTATION;
D O I
10.1109/ACPR.2013.25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image tagging plays a critical role in image indexing and retrieval and it has gained more and more attention along with the increasing availability of large quantities of web images. However, most of current tagging methods only utilize single feature type, while combining multiple types of features has been proved to be effective for image analysis. In this paper, we propose a multi-feature late fusion method for image tagging. For an image, we first learn several scores with regard to each tag by using different single features or combinations of single features based on a tag relevance learner. Then we learn an optimal combination weight for each tag score and linearly combine all the tag scores with the learned weights. Finally, a low-rank tag pairwise matrix is learned with the linearly combined tag scores and a robust tag score is recovered from the low-rank matrix. The tags with the largest scores are regarded as the predicted tags. We compare our approach with several multi-feature fusion techniques over a real-world dataset NUS-WIDE and show the effectiveness of the proposed multi-feature fusion method.
引用
收藏
页码:34 / 37
页数:4
相关论文
共 50 条
  • [1] A Multi-feature Fusion Based Method For Urban Sound Tagging
    Bai, Jisheng
    Chen, Chen
    Chen, Jianfeng
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 1313 - 1317
  • [2] Image retrieval based on multi-feature fusion
    Dong Wenfei
    Yu Shuchun
    Liu Songyu
    Zhang Zhiqiang
    Gu Wenbo
    2014 FOURTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC), 2014, : 240 - 243
  • [3] Searchable Encrypted Image Retrieval Based on Multi-Feature Adaptive Late-Fusion
    Ma, Wentao
    Qin, Jiaohua
    Xiang, Xuyu
    Tan, Yun
    He, Zhibin
    MATHEMATICS, 2020, 8 (06)
  • [4] Image Multi-Feature Fusion for Clothing Style Classification
    Zhang, Yanrong
    He, Kemin
    Song, Rong
    IEEE ACCESS, 2023, 11 : 107843 - 107854
  • [5] Hyperspectral image classification using multi-feature fusion
    Li, Fang
    Wang, Jie
    Lan, Rushi
    Liu, Zhenbing
    Luo, Xiaonan
    OPTICS AND LASER TECHNOLOGY, 2019, 110 : 176 - 183
  • [6] Multi-Feature Fusion for Enhancing Image Similarity Learning
    Lu, Jian
    Ma, Cheng-Xian
    Zhou, Yan-Ran
    Luo, Mao-Xin
    Zhang, Kai-Bing
    IEEE ACCESS, 2019, 7 : 167547 - 167556
  • [7] Multi-feature decomposition and transformer-fusion: an infrared and visible image fusion network based on multi-feature decomposition and transformer
    Li, Xujun
    Duan, Zhicheng
    Chang, Jia
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (06)
  • [8] Multi-feature Fusion Method Applied in Texture Image Segmentation
    Du, Hui
    Wang, Zhihe
    Wang, Dan
    Wang, Xiaoli
    2018 14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2018, : 135 - 139
  • [9] Remote sensing image fusion algorithm based on multi-feature
    Wang, Feng
    Cheng, Yongmei
    Li, Song
    Mu, Honglei
    Li, Ludong
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2015, 33 (03): : 489 - 494
  • [10] Human behavior recognition based on multi-feature fusion of image
    Xu Song
    Hongyu Zhou
    Guoying Liu
    Cluster Computing, 2019, 22 : 9113 - 9121