ORTHOGONAL MULTI-WAVELETS FROM MATRIX FACTORIZATION

被引:0
|
作者
Xiao, Hongying [1 ]
机构
[1] China Three Gorges Univ, Coll Sci, Yichang 443002, Peoples R China
关键词
multi-wavelets; PR condition; accuracy; block central symmetric matrix; MULTIVARIATE FILTER BANKS; REFINABLE FUNCTIONS; APPROXIMATION; ACCURACY;
D O I
10.4134/JKMS.2009.46.2.281
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Accuracy of the scaling function is very crucial in wavelet theory, or correspondingly, in the study of wavelet filter banks. We are mainly interested in vector-valued filter banks having matrix factorization and indicate how to choose block central symmetric matrices to construct multi-wavelets with suitable accuracy.
引用
收藏
页码:281 / 294
页数:14
相关论文
共 50 条
  • [31] Using unified probabilistic matrix factorization for contextual advertisement recommendation
    Tu, Dan-Dan
    Shu, Cheng-Chun
    Yu, Hai-Yan
    Ruan Jian Xue Bao/Journal of Software, 2013, 24 (03): : 454 - 464
  • [32] Time-Varying Nonlinear Causality Detection Using Regularized Orthogonal Least Squares and Multi Wavelets With Applications to EEG
    Li, Yang
    Lei, Meng-Ying
    Guo, Yuzhu
    Hu, Zhongyi
    Wei, Hua-Liang
    IEEE ACCESS, 2018, 6 : 17826 - 17840
  • [33] Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization
    Sauwen, Nicolas
    Acou, Marjan
    Sima, Diana M.
    Veraart, Jelle
    Maes, Frederik
    Himmelreich, Uwe
    Achten, Eric
    Van Huffel, Sabine
    BMC MEDICAL IMAGING, 2017, 17
  • [34] Data Imputation Using a Trust Network for Recommendation via Matrix Factorization
    Hwang, Won-Seok
    Li, Shaoyu
    Kim, Sang-Wook
    Lee, Kichun
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2018, 15 (02) : 347 - 368
  • [35] Matrix factorization-based improved classification of gene expression data
    Malik S.
    Bansal P.
    Recent Advances in Computer Science and Communications, 2020, 13 (05) : 858 - 863
  • [36] A Novel Approach for Designing a Class of Orthogonal Vector-valued Wavelets
    Guo, Mingpu
    Lv, Baoxian
    IITAW: 2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATIONS WORKSHOPS, 2009, : 157 - 160
  • [37] Compactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions
    Hui Ji
    Zuowei Shen
    Advances in Computational Mathematics, 1999, 11 : 81 - 104
  • [38] Compactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions
    Ji, H
    Shen, ZW
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (01) : 81 - 104
  • [39] Derivative-orthogonal wavelets for discretizing constrained optimal control problems
    Ashpazzadeh, E.
    Han, B.
    Lakestani, M.
    Razzaghi, M.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (05) : 786 - 810
  • [40] Existence and design of biorthogonal matrix-valued wavelets
    Cui, Lihong
    Zhai, Bolan
    Zhang, Tongbing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) : 2679 - 2687