Molecular Dynamics Simulations of Kapitza Length for Argon-Silicon and Water-Silicon Interfaces

被引:48
作者
An Truong Pham [1 ]
Barisik, Murat [2 ]
Kim, Bohung [1 ]
机构
[1] Univ Ulsan, Sch Mech Engn, Ulsan 680749, South Korea
[2] So Methodist Univ, Dept Mech Engn, Dallas, TX 75205 USA
关键词
Molecular dynamics simulations; Interfacial thermal resistance; Solid/liquid interface; Kapitza length; Heat transfer; Nanofluid; THERMAL-RESISTANCE; HEAT-TRANSFER; TEMPERATURE; FLUID;
D O I
10.1007/s12541-014-0341-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A comprehensive understanding of heat conduction between two parallel solid walls separated by liquid remains incomplete in nanometer scale. In addition, the solid/liquid interfacial thermal resistance has been an important technical issue in thermal/fluid engineering such as micro electro-mechanical systems and nano electro-mechanical systems with liquid inside. Therefore, further advancements in nanoscale physics require an advanced understanding of momentum and energy transport at solid/liquid interfaces. This study employs three-dimensional molecular dynamics (MD) simulations to investigate the thermal resistance at solid/liquid interfaces. Heat conduction between two parallel silicon walls separated by a thin film of liquid water is considered. The density distribution of liquid water is discussed with the simulation results to further understanding of the dynamic properties of water near solid surfaces. Meanwhile, temperature profiles appear discontinuous between liquid and solid temperatures due to the dissimilarity of thermal transport properties of the two materials, which validates thermal resistance (or Kapitza length) at solid/liquid interfaces. MD results also investigate the temperature dependence of the Kapitza length, demonstrating that the Kaptiza lengths fluctuate around an average value and are independent of the wall temperature at solid/liquid interfaces. Our study provides useful information for the design of thermal management or heat dissipation devices across silicon/water and silicon/argon interfaces in nanoscale.
引用
收藏
页码:323 / 329
页数:7
相关论文
共 25 条
[1]  
Allen M. P., 1989, COMPUTER SIMULATION, P21
[2]  
Arkles B., 2006, PAINT COATINGS IND M, V22, P114, DOI [DOI 10.1007/BF02846429, 10.1016/j.micromeso.2005.05.031, DOI 10.1016/J.MICROMESO.2005.05.031]
[3]   Temperature dependence of thermal resistance at the water/silicon interface [J].
Barisik, Murat ;
Beskok, Ali .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 77 :47-54
[4]   Wetting characterisation of silicon (1,0,0) surface [J].
Barisik, Murat ;
Beskok, Ali .
MOLECULAR SIMULATION, 2013, 39 (09) :700-709
[5]   Boundary treatment effects on molecular dynamics simulations of interface thermal resistance [J].
Barisik, Murat ;
Beskok, Ali .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (23) :7881-7892
[6]   Nanoscale design to enable the revolution in renewable energy [J].
Baxter, Jason ;
Bian, Zhixi ;
Chen, Gang ;
Danielson, David ;
Dresselhaus, Mildred S. ;
Fedorov, Andrei G. ;
Fisher, Timothy S. ;
Jones, Christopher W. ;
Maginn, Edward ;
Kortshagen, Uwe ;
Manthiram, Arumugam ;
Nozik, Arthur ;
Rolison, Debra R. ;
Sands, Timothy ;
Shi, Li ;
Sholl, David ;
Wu, Yiying .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (06) :559-588
[7]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[8]   EXACT MOLECULAR-DYNAMICS AND KINETIC-THEORY RESULTS FOR THERMAL TRANSPORT-COEFFICIENTS OF THE LENNARD-JONES ARGON FLUID IN A WIDE REGION OF STATES [J].
BORGELT, P ;
HOHEISEL, C ;
STELL, G .
PHYSICAL REVIEW A, 1990, 42 (02) :789-794
[9]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[10]   Surface Functionalization Mechanisms of Enhancing Heat Transfer at Solid-Liquid Interfaces [J].
Goicochea, Javier V. ;
Hu, Ming ;
Michel, Bruno ;
Poulikakos, Dimos .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2011, 133 (08)