Formal variable separation approach for nonintegrable models

被引:122
作者
Lou, SY [1 ]
Chen, LL
机构
[1] Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200030, Peoples R China
[2] Ningbo Univ, Inst Math Phys, Ningbo 315211, Peoples R China
关键词
D O I
10.1063/1.533103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a formal variable separation approach, a nonlinear partial differential equation can be solved by solving ordinary different equations or even algebraic equations. Taking the KdV-Burgers and modified KdV-Burgers equations with background interaction as simple examples, some explicit solitary wave solutions which are induced by background source and nonlinearity or dispersion are obtained. (C) 1999 American Institute of Physics. [S0022- 2488(99)00411-9].
引用
收藏
页码:6491 / 6500
页数:10
相关论文
共 18 条
[1]  
Ablowitz M. J., 1991, LONDON MATH SOC LECT, V149
[2]  
[Anonymous], 1986, APPL LIE GROUP DIFFE, DOI DOI 10.1007/978-1-4684-0274-2
[3]  
CAO CW, 1990, SCI CHINA SER A, V33, P528
[4]   THE CONSTRAINT OF THE KADOMTSEV-PETVIASHVILI EQUATION AND ITS SPECIAL SOLUTIONS [J].
CHENG, Y ;
LI, YS .
PHYSICS LETTERS A, 1991, 157 (01) :22-26
[5]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[6]  
GU CH, 1992, LETT MATH PHYS, V26, P199, DOI 10.1007/BF00420753
[8]   EFFECT OF WEAK DISLOCATION POTENTIAL ON NONLINEAR-WAVE PROPAGATION IN ANHARMONIC CRYSTAL [J].
KONNO, K ;
KAMEYAMA, W ;
SANUKI, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (01) :171-176
[9]   (1+1)-DIMENSIONAL INTEGRABLE SYSTEMS AS SYMMETRY CONSTRAINTS OF (2+1)-DIMENSIONAL SYSTEMS [J].
KONOPELCHENKO, B ;
SIDORENKO, J ;
STRAMPP, W .
PHYSICS LETTERS A, 1991, 157 (01) :17-21
[10]   EXACT-SOLUTIONS FOR SOME NONLINEAR EQUATIONS [J].
LAN, H ;
WANG, K .
PHYSICS LETTERS A, 1989, 137 (7-8) :369-372