Using Visible Spectral Information to Predict Long-Wave Infrared Spectral Emissivity: A Case Study over the Sokolov Area of the Czech Republic with an Airborne Hyperspectral Scanner Sensor

被引:3
作者
Adar, Simon [1 ]
Shkolnisky, Yoel [2 ]
Notesco, Gila [3 ]
Ben-Dor, Eyal [3 ]
机构
[1] Tel Aviv Univ, Porter Sch Environm Studies, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Appl Math, IL-69978 Tel Aviv, Israel
[3] Tel Aviv Univ, Dept Geog, IL-39040 Tel Aviv, Israel
关键词
missing data; imputation; k nearest neighbors; multisensor analysis; emissivity prediction; sensor-to-sensor (SENTOS) prediction; NEAREST-NEIGHBOR IMPUTATION; LANDSAT TM; MODIS DATA; FOREST; COVER; REFLECTANCE; ALGORITHM; FUSION; VOLUME; MODEL;
D O I
10.3390/rs5115757
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote-sensing platforms are often comprised of a cluster of different spectral range detectors or sensors to benefit from the spectral identification capabilities of each range. Missing data from these platforms, caused by problematic weather conditions, such as clouds, sensor failure, low temporal coverage or a narrow field of view (FOV), is one of the problems preventing proper monitoring of the Earth. One of the possible solutions is predicting a detector or sensor's missing data using another detector/sensor. In this paper, we propose a new method of predicting spectral emissivity in the long-wave infrared (LWIR) spectral region using the visible (VIS) spectral region. The proposed method is suitable for two main scenarios of missing data: sensor malfunctions and narrow FOV. We demonstrate the usefulness and limitations of this prediction scheme using the airborne hyperspectral scanner (AHS) sensor, which consists of both VIS and LWIR spectral regions, in a case study over the Sokolov area, Czech Republic.
引用
收藏
页码:5757 / 5782
页数:26
相关论文
共 53 条
[1]  
[Anonymous], 2013, AISA AIRB HYP IM SYS
[2]  
[Anonymous], 2012, THEORY REFLECTANCE E
[3]  
[Anonymous], P ADV NEURAL INFORM
[4]   Performance Study of the Application of Artificial Neural Networks to the Completion and Prediction of Data Retrieved by Underwater Sensors [J].
Baladron, Carlos ;
Aguiar, Javier M. ;
Calavia, Lorena ;
Carro, Belen ;
Sanchez-Esguevillas, Antonio ;
Hernandez, Luis .
SENSORS, 2012, 12 (02) :1468-1481
[5]   Image inpainting [J].
Bertalmio, M ;
Sapiro, G ;
Caselles, V ;
Ballester, C .
SIGGRAPH 2000 CONFERENCE PROCEEDINGS, 2000, :417-424
[6]   Assessment of AHS (Airborne Hyperspectral Scanner) sensor to map macroalgal communities on the Ria de vigo and Ria de Aldan coast (NW Spain) [J].
Casal, G. ;
Sanchez-Carnero, N. ;
Dominguez-Gomez, J. A. ;
Kutser, T. ;
Freire, J. .
MARINE BIOLOGY, 2012, 159 (09) :1997-2013
[7]   Multitemporal, multichannel AVHRR data sets for land biosphere studies - Artifacts and corrections [J].
Cihlar, J ;
Ly, H ;
Li, ZQ ;
Chen, J ;
Pokrant, H ;
Huang, FT .
REMOTE SENSING OF ENVIRONMENT, 1997, 60 (01) :35-57
[8]  
Courault D., 2005, Irrigation and Drainage Systems, V19, P223, DOI 10.1007/s10795-005-5186-0
[9]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[10]   The Mahalanobis distance [J].
De Maesschalck, R ;
Jouan-Rimbaud, D ;
Massart, DL .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (01) :1-18