Catalytic steam reforming of acetic acid in a fluidized bed reactor with oxygen addition (Reprinted from Int J Hydrogen Energy, vol 33, pg 4387-96, 2008)

被引:63
作者
Medrano, J. A. [1 ]
Oliva, M. [1 ]
Ruiz, J. [1 ]
Garcia, L. [1 ]
Arauzo, J. [1 ]
机构
[1] Univ Zaragoza, GPT, Aragon Inst Engn Res 13A, Zaragoza 50018, Spain
关键词
Steam reforming; Acetic acid; Pyrolysis liquids; Oxygen addition; Fluidized bed; Nickel catalyst; FAST-PYROLYSIS; NI CATALYSTS; BIO-OIL; PARTIAL OXIDATION; MODEL COMPOUNDS; BIOMASS; METHANE; ETHANOL; COMPOUND; GAS;
D O I
10.1016/j.ijhydene.2008.05.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Catalytic steam reforming of bio-oil is a promising process for producing hydrogen in a sustainable environmentally friendly way that can improve the utilization of local resources (natural sources or wastes). However, there remain drawbacks such as coke formation that produce operational problems and deactivation of the catalysts. Coprecipitated Ni/Al catalysts are here used in a fluidized bed for reforming at 650 degrees C of acetic acid as a model compound of bio-oil-aqueous fraction. Different strategies are applied in order to study their effects on the catalytic steam reforming process: modification of the catalyst by increasing the calcination temperature or adding promoters such as calcium. The addition of small quantities of oxygen is also tested resulting in an optimum percentage to achieve a high carbon conversion process with less coke and without a hydrogen yield penalty production. The results for catalytic steam reforming are compared with other ones from literature. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7065 / 7074
页数:10
相关论文
共 36 条
[1]   STEAM REFORMING OF METHANE ON REDUCED NON-STOICHIOMETRIC NICKEL ALUMINATE CATALYSTS [J].
ALUBAID, A ;
WOLF, EE .
APPLIED CATALYSIS, 1988, 40 (1-2) :73-85
[2]   Catalytic pyrogasification of biomass. Evaluation of modified nickel catalysts [J].
Arauzo, J ;
Radlein, D ;
Piskorz, J ;
Scott, DS .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (01) :67-75
[3]   Ethanol steam reforming over MgxNi1-xAl2O3 spinel oxide-supported Rh catalysts [J].
Aupretre, F ;
Descorme, C ;
Duprez, D ;
Casanave, D ;
Uzio, D .
JOURNAL OF CATALYSIS, 2005, 233 (02) :464-477
[4]   Steam reforming of naphthalene on Ni-Cr/Al2O3 catalysts doped with MgO, TiO2, and La2O3 [J].
Bangala, DN ;
Abatzoglou, N ;
Chornet, E .
AICHE JOURNAL, 1998, 44 (04) :927-936
[5]   Catalytic steam reforming of acetic acid for hydrogen production [J].
Basagiannis, A. C. ;
Verykios, X. E. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (15) :3343-3355
[6]   Reforming reactions of acetic acid on nickel catalysts over a wide temperature range [J].
Basagiannis, A. C. ;
Verykios, X. E. .
APPLIED CATALYSIS A-GENERAL, 2006, 308 :182-193
[7]   Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids [J].
Bimbela, F. ;
Oliva, M. ;
Ruiz, J. ;
Garcia, L. ;
Arauzo, J. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2007, 79 (1-2) :112-120
[8]   Hydrogen production by catalytic steam reforming of acetol, a model compound of bio-oil [J].
Carmen Ramos, M. ;
Navascues, Ana I. ;
Garcia, Lucia ;
Bilbao, Rafael .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (08) :2399-2406
[9]   The production of hydrogen by steam reforming of trap grease - Progress in catalyst performance [J].
Czernik, S ;
French, RJ ;
Magrini-Bair, KA ;
Chornet, E .
ENERGY & FUELS, 2004, 18 (06) :1738-1743
[10]   Overview of applications of biomass fast pyrolysis oil [J].
Czernik, S ;
Bridgwater, AV .
ENERGY & FUELS, 2004, 18 (02) :590-598