Multi-Label Classification Using Labelled Association

被引:0
作者
Kase, Yuichiro [1 ]
Miura, Takao [1 ]
机构
[1] Hosei Univ, Dept Adv Sci, Kajinocho 3-7-2, Tokyo, Japan
来源
2015 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM) | 2015年
关键词
Classification; Multi-label Classification; Data Mining;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this investigation we discuss a multi-label classification problem where documents may have several labels. We put our focus on dependencies among labels in a probabilistic manner, and we extract characteristic features in a form of probabilistic distribution functions by data mining techniques. We show some experimental results, i.e., dependencies among items/labels to see the effectiveness of the approach.
引用
收藏
页码:90 / 95
页数:6
相关论文
共 8 条
[1]  
Han J, 2012, MOR KAUF D, P1
[2]  
Kase Y., 2015, 15 C INT EXTR GEST C
[3]  
McCallum A.K., 1999, WORKSH TEXT LEARN AA
[4]  
NIGAM K, 1999, MACH LEARN, P1
[5]  
Takamura M., 2010, INTRO MACHINE LEARNI
[6]  
Ueda N., 2003, Advances in neural information processing system, P721
[7]  
Zhang M.L., 2010, MULTILABEL LEARNING
[8]  
Zhang M.L., 2005, IEEE INT C GRAN COMP