The Gut Microbiota Profile According to Glycemic Control in Type 1 Diabetes Patients Treated with Personal Insulin Pumps

被引:17
作者
Mrozinska, Sandra [1 ,2 ]
Kapusta, Przemyslaw [3 ]
Gosiewski, Tomasz [4 ]
Sroka-Oleksiak, Agnieszka [4 ]
Ludwig-Slomczynska, Agnieszka H. [3 ]
Matejko, Bartlomiej [1 ,2 ]
Kiec-Wilk, Beata [1 ,2 ]
Bulanda, Malgorzata [4 ]
Malecki, Maciej T. [1 ,2 ]
Wolkow, Pawel P. [3 ]
Klupa, Tomasz [1 ,2 ]
机构
[1] Jagiellonian Univ Med Coll, Fac Med, Dept Metab Dis, 2 Jakubowskiego St, PL-30688 Krakow, Poland
[2] Univ Hosp, Dept Metab Dis, 2 Jakubowskiego St, PL-30688 Krakow, Poland
[3] Jagiellonian Univ Med Coll, Ctr Med Genom OMICRON, 7c Kopernika St, PL-31034 Krakow, Poland
[4] Jagiellonian Univ Med Coll, Fac Med, Dept Microbiol, 18 Czysta St, PL-31121 Krakow, Poland
关键词
KEGG pathways; microbiota; next-generation sequencing; type; 1; diabetes; FECAL MICROBIOTA; CHILDREN; MELLITUS; ONSET; TOOL;
D O I
10.3390/microorganisms9010155
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Recently, several studies explored associations between type 1 diabetes (T1DM) and microbiota. The aim of our study was to assess the colonic microbiota structure according to the metabolic control in T1DM patients treated with insulin pumps. We studied 89 T1DM patients (50.6% women) at the median age of 25 (IQR, 22-29) years. Pielou's evenness (p = 0.02), and Shannon's (p = 0.04) and Simpson's diversity indexes (p = 0.01), were higher in patients with glycosylated hemoglobin (HbA1c) >= 53 mmol/mol (7%). There were no differences in beta diversity between groups. A linear discriminant analysis effect size (LEfSe) algorithm showed that one family (Ruminococcaceae) was enriched in patients with HbA1c < 53 mmol/mol, whereas one family (Streptococcaceae) and four species (Ruminococcus torques, unclassified species of Lactococcus, Eubacteroim dolichum, and Coprobacillus cateniformis) were enriched in patients with HbA1c >= 53 mmol/mol. We found that at class level, the following pathways according to Kyoto Encyclopedia of Genes and Genomes were enriched in patients with HbA1c < 53 mmol/mol: bacterial motility proteins, secretion system, bacterial secretion system, ribosome biogenesis, translation proteins, and lipid biosynthesis, whereas in patients with HbA1c >= 53 mmol/mol, the galactose metabolism, oxidative phosphorylation, phosphotransferase system, fructose, and mannose metabolism were enriched. Observed differences in alpha diversity, metabolic pathways, and associations between bacteria and HbA1c in colonic flora need further investigation.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 45 条
  • [1] Alterations in Intestinal Microbiota Correlate With Susceptibility to Type 1 Diabetes
    Alkanani, Aimon K.
    Hara, Naoko
    Gottlieb, Peter A.
    Ir, Diana
    Robertson, Charles E.
    Wagner, Brandie D.
    Frank, Daniel N.
    Zipris, Danny
    [J]. DIABETES, 2015, 64 (10) : 3510 - 3520
  • [2] Glycemic Targets: Standards of Medical Care in Diabetes-2020
    不详
    [J]. DIABETES CARE, 2020, 43 : S66 - S76
  • [3] Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
    Bolyen, Evan
    Rideout, Jai Ram
    Dillon, Matthew R.
    Bokulich, NicholasA.
    Abnet, Christian C.
    Al-Ghalith, Gabriel A.
    Alexander, Harriet
    Alm, Eric J.
    Arumugam, Manimozhiyan
    Asnicar, Francesco
    Bai, Yang
    Bisanz, Jordan E.
    Bittinger, Kyle
    Brejnrod, Asker
    Brislawn, Colin J.
    Brown, C. Titus
    Callahan, Benjamin J.
    Caraballo-Rodriguez, Andres Mauricio
    Chase, John
    Cope, Emily K.
    Da Silva, Ricardo
    Diener, Christian
    Dorrestein, Pieter C.
    Douglas, Gavin M.
    Durall, Daniel M.
    Duvallet, Claire
    Edwardson, Christian F.
    Ernst, Madeleine
    Estaki, Mehrbod
    Fouquier, Jennifer
    Gauglitz, Julia M.
    Gibbons, Sean M.
    Gibson, Deanna L.
    Gonzalez, Antonio
    Gorlick, Kestrel
    Guo, Jiarong
    Hillmann, Benjamin
    Holmes, Susan
    Holste, Hannes
    Huttenhower, Curtis
    Huttley, Gavin A.
    Janssen, Stefan
    Jarmusch, Alan K.
    Jiang, Lingjing
    Kaehler, Benjamin D.
    Bin Kang, Kyo
    Keefe, Christopher R.
    Keim, Paul
    Kelley, Scott T.
    Knights, Dan
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (08) : 852 - 857
  • [4] Use of the microbiome in the management of children with type 2 diabetes mellitus
    Brar, Preneet Cheema
    Kohn, Brenda
    [J]. CURRENT OPINION IN PEDIATRICS, 2019, 31 (04) : 524 - 530
  • [5] Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/nmeth.3869, 10.1038/NMETH.3869]
  • [6] Response to: Comment on "The Gut Microbiome Profile in Obesity: A Systematic Review"
    Castaner, Olga
    Schroder, Helmut
    [J]. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY, 2018, 2018
  • [7] Innate receptors and microbes in induction of autoimmunity
    Chervonsky, Alexander
    [J]. CURRENT OPINION IN IMMUNOLOGY, 2009, 21 (06) : 641 - 647
  • [8] A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes
    Davis-Richardson, Austin G.
    Triplett, Eric W.
    [J]. DIABETOLOGIA, 2015, 58 (07) : 1386 - 1393
  • [9] Aberrant gut microbiota composition at the onset of type 1 diabetes in young children
    de Goffau, Marcus C.
    Fuentes, Susana
    van den Bogert, Bartholomeus
    Honkanen, Hanna
    de Vos, Willem M.
    Welling, Gjalt W.
    Hyoty, Heikki
    Harmsen, Hermie J. M.
    [J]. DIABETOLOGIA, 2014, 57 (08) : 1569 - 1577
  • [10] Fecal Microbiota Composition Differs Between Children With β-Cell Autoimmunity and Those Without
    de Goffau, Marcus C.
    Luopajarvi, Kristiina
    Knip, Mikael
    Ilonen, Jorma
    Ruohtula, Terhi
    Harkonen, Taina
    Orivuori, Laura
    Hakala, Saara
    Welling, Gjalt W.
    Harmsen, Hermie J.
    Vaarala, Outi
    [J]. DIABETES, 2013, 62 (04) : 1238 - 1244