Pathological myopia classification with simultaneous lesion segmentation using deep learning

被引:45
作者
Hemelings, Ruben [1 ,5 ]
Elen, Bart [5 ]
Blaschko, Matthew B. [3 ]
Jacob, Julie [2 ]
Stalmans, Ingeborg [1 ,2 ]
De Boever, Patrick [4 ,5 ]
机构
[1] Katholieke Univ Leuven, Res Grp Ophthalmol, Herestr 49, B-3000 Leuven, Belgium
[2] UZ Leuven, Ophthalmol Dept, Herestr 49, B-3000 Leuven, Belgium
[3] Katholieke Univ Leuven, ESAT PSI, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[4] Hasselt Univ, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium
[5] VITO NV, Boeretang 200, B-2400 Mol, Belgium
关键词
Pathological myopia; fovea localization; peripapillary atrophy; retinal detachment; convolutional neural network; fundus image; glaucoma; OPTIC DISC; PARAPAPILLARY ATROPHY; PERIPAPILLARY ATROPHY; PREVALENCE; PROGRESSION; RETINOPATHY; BETA;
D O I
10.1016/j.cmpb.2020.105920
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objectives: Pathological myopia (PM) is the seventh leading cause of blindness, with a reported global prevalence up to 3%. Early and automated PM detection from fundus images could aid to prevent blindness in a world population that is characterized by a rising myopia prevalence. We aim to assess the use of convolutional neural networks (CNNs) for the detection of PM and semantic segmentation of myopia-induced lesions from fundus images on a recently introduced reference data set. Methods: This investigation reports on the results of CNNs developed for the recently introduced Pathological Myopia (PALM) dataset, which consists of 1200 images. Our CNN bundles lesion segmentation and PM classification, as the two tasks are heavily intertwined. Domain knowledge is also inserted through the introduction of a new Optic Nerve Head (ONH)-based prediction enhancement for the segmentation of atrophy and fovea localization. Finally, we are the first to approach fovea localization using segmentation instead of detection or regression models. Evaluation metrics include area under the receiver operating characteristic curve (AUC) for PM detection, Euclidean distance for fovea localization, and Dice and F1 metrics for the semantic segmentation tasks (optic disc, retinal atrophy and retinal detachment). Results: Models trained with 400 available training images achieved an AUC of 0.9867 for PM detection, and a Euclidean distance of 58.27 pixels on the fovea localization task, evaluated on a test set of 400 images. Dice and F1 metrics for semantic segmentation of lesions scored 0.9303 and 0.9869 on optic disc, 0.8001 and 0.9135 on retinal atrophy, and 0.8073 and 0.7059 on retinal detachment, respectively. Conclusions: We report a successful approach for a simultaneous classification of pathological myopia and segmentation of associated lesions. Our work was acknowledged with an award in the context of the "Pathological Myopia detection from retinal images" challenge held during the IEEE International Symposium on Biomedical Imaging (April 2019). Considering that (pathological) myopia cases are often identified as false positives and negatives in glaucoma deep learning models, we envisage that the current work could aid in future research to discriminate between glaucomatous and highly-myopic eyes, complemented by the localization and segmentation of landmarks such as fovea, optic disc and atrophy. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 47 条
[1]  
[Anonymous], INTRO GRAND CHALLENG
[2]  
Babakhin Y, 2019, ABS 1904 04445
[3]  
Babu SC, 2018, RELATION NETWORKS OP
[4]  
Berman M, 2019, ARXIVORG ITHACA
[5]   A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection [J].
Cai, Zhaowei ;
Fan, Quanfu ;
Feris, Rogerio S. ;
Vasconcelos, Nuno .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :354-370
[6]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[7]   Microstructure of Parapapillary Atrophy: Beta Zone and Gamma Zone [J].
Dai, Yi ;
Jonas, Jost B. ;
Huang, Haili ;
Wang, Min ;
Sun, Xinghuai .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (03) :2013-2018
[8]   FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE [J].
Decenciere, Etienne ;
Zhang, Xiwei ;
Cazuguel, Guy ;
Lay, Bruno ;
Cochener, Beatrice ;
Trone, Caroline ;
Gain, Philippe ;
Ordonez-Varela, John-Richard ;
Massin, Pascale ;
Erginay, Ali ;
Charton, Beatrice ;
Klein, Jean-Claude .
IMAGE ANALYSIS & STEREOLOGY, 2014, 33 (03) :231-234
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]  
Devries T, 2017, ABS 1708 04552