DEEP-SST-EDDIES: A DEEP LEARNING FRAMEWORK TO DETECT OCEANIC EDDIES IN SEA SURFACE TEMPERATURE IMAGES

被引:0
作者
Moschos, Evangelos [1 ]
Schwander, Olivier [2 ]
Stegner, Alexandre [1 ]
Gallinari, Patrick [2 ,3 ]
机构
[1] Ecole Polytech, CNRS IPSL, Lab Meteorol Dynam LMD, Palaiseau, France
[2] Sorbonne Univ, LIP6, Paris, France
[3] Criteo AI Lab, Paris, France
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
关键词
Mesoscale Eddies; Oceanography; Sea Surface Temperature; Deep Learning; Remote Sensing; EDDY DETECTION; MESOSCALE; ALGORITHM;
D O I
10.1109/icassp40776.2020.9053909
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Until now, mesoscale oceanic eddies have been automatically detected through physical methods on satellite altimetry. Nevertheless, they often have a visible signature on Sea Surface Temperature (SST) satellite images, which have not been yet sufficiently exploited. We introduce a novel method that employs Deep Learning to detect eddy signatures on such input. We provide the first available dataset for this task, retaining SST images through altimetric-based region proposal. We train a CNN-based classifier which succeeds in accurately detecting eddy signatures in well-defined examples. Our experiments show that the difficulty of classifying a large set of automatically retained images can be tackled by training on a smaller subset of manually labeled data. The difference in performance on the two sets is explained by the noisy automatic labeling and intrinsic complexity of the SST signal. This approach can provide to oceanographers a tool for validation of altimetric eddy detection through SST.
引用
收藏
页码:4307 / 4311
页数:5
相关论文
共 25 条
  • [1] Up to What Extent Can We Characterize Ocean Eddies Using Present-Day Gridded Altimetric Products?
    Amores, Angel
    Jorda, Gabriel
    Arsouze, Thomas
    Le Sommer, Julien
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2018, 123 (10) : 7220 - 7236
  • [2] Oceanic eddy detection and lifetime forecast using machine learning methods
    Ashkezari, Mohammad D.
    Hill, Christopher N.
    Follett, Christopher N.
    Forget, Gael
    Follows, Michael J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (23) : 12234 - 12241
  • [3] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [4] Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre
    Brach, Laurent
    Deixonne, Patrick
    Bernard, Marie-France
    Durand, Edmee
    Desjean, Marie-Christine
    Perez, Emile
    van Sebille, Erik
    ter Halle, Alexandra
    [J]. MARINE POLLUTION BULLETIN, 2018, 126 : 191 - 196
  • [5] High and Ultra-High resolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project
    Buongiorno Nardelli, B.
    Tronconi, C.
    Pisano, A.
    Santoleri, R.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2013, 129 : 1 - 16
  • [6] Global observations of nonlinear mesoscale eddies
    Chelton, Dudley B.
    Schlax, Michael G.
    Samelson, Roger M.
    [J]. PROGRESS IN OCEANOGRAPHY, 2011, 91 (02) : 167 - 216
  • [7] Detection of Mesoscale Eddy-Related Structures Through Iso-SST Patterns
    D'Alimonte, Davide
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (02) : 189 - 193
  • [8] An Automated Approach to Detect Oceanic Eddies From Satellite Remotely Sensed Sea Surface Temperature Data
    Dong, Changming
    Nencioli, Francesco
    Liu, Yu
    McWilliams, James C.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (06) : 1055 - 1059
  • [9] Franz K, 2018, INT GEOSCI REMOTE SE, P6887, DOI 10.1109/IGARSS.2018.8519261
  • [10] Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies
    Gaube, P.
    Chelton, D. B.
    Strutton, P. G.
    Behrenfeld, M. J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (12) : 6349 - 6370