Effect of interfaces on the nearby Brownian motion

被引:37
作者
Huang, Kai [1 ]
Szlufarska, Izabela [1 ,2 ]
机构
[1] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
美国国家科学基金会;
关键词
VELOCITY AUTOCORRELATION FUNCTION; LONG-TIME TAILS; INSTANTANEOUS VELOCITY; LIQUIDS; MEMORY; DECAY; SLIP; FLOW; WALL;
D O I
10.1038/ncomms9558
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Near-boundary Brownian motion is a classic hydrodynamic problem of great importance in a variety of fields, from biophysics to micro-/nanofluidics. However, owing to challenges in experimental measurements of near-boundary dynamics, the effect of interfaces on Brownian motion has remained elusive. Here we report a computational study of this effect using mu s-long large-scale molecular dynamics simulations and our newly developed Green-Kubo relation for friction at the liquid-solid interface. Our computer experiment unambiguously reveals that the t(-3/2) long-time decay of the velocity autocorrelation function of a Brownian particle in bulk liquid is replaced by a t(-5/2) decay near a boundary. We discover a general breakdown of traditional no-slip boundary condition at short time scales and we show that this breakdown has a profound impact on the near-boundary Brownian motion. Our results demonstrate the potential of Brownian-particle-based micro-/nanosonar to probe the local wettability of liquid-solid interfaces.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] The effects of planar metallic interfaces on the radiation of nearby electrical dipoles
    Penninck, Lieven
    Mladenowski, Saso
    Neyts, Kristiaan
    JOURNAL OF OPTICS, 2010, 12 (07)
  • [22] Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion
    Bratian, Vasile
    Acu, Ana-Maria
    Oprean-Stan, Camelia
    Dinga, Emil
    Ionescu, Gabriela-Mariana
    MATHEMATICS, 2021, 9 (22)
  • [23] Branching Brownian Motion with Self-Repulsion
    Bovier, Anton
    Hartung, Lisa
    ANNALES HENRI POINCARE, 2023, 24 (03): : 931 - 956
  • [24] Inertia triggers nonergodicity of fractional Brownian motion
    Cherstvy, Andrey G.
    Wang, Wei
    Metzler, Ralf
    Sokolov, Igor M.
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [25] Brownian motion of a charged colloid in restricted confinement
    Avni, Yael
    Komura, Shigeyuki
    Andelman, David
    PHYSICAL REVIEW E, 2021, 103 (04)
  • [26] Parallel Molecular Distributed Detection With Brownian Motion
    Rogers, Uri
    Koh, Min-Sung
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2016, 15 (08) : 871 - 880
  • [27] Nonequilibrium Brownian Motion beyond the Effective Temperature
    Gnoli, Andrea
    Puglisi, Andrea
    Sarracino, Alessandro
    Vulpiani, Angelo
    PLOS ONE, 2014, 9 (04):
  • [28] Testing of fractional Brownian motion in a noisy environment
    Balcerek, Michal
    Burnecki, Krzysztof
    CHAOS SOLITONS & FRACTALS, 2020, 140
  • [29] Brownian motion with time-dependent friction and single-particle dynamics in liquids
    Lad, Kirit N.
    Patel, Margi K.
    Pratap, Arun
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [30] Motion of Discrete Interfaces on the Triangular Lattice
    Scilla, Giovanni
    MILAN JOURNAL OF MATHEMATICS, 2020, 88 (02) : 315 - 346