Asymptotic Conformality of the Barycentric Extension of Quasiconformal Maps

被引:5
作者
Matsuzaki, Katsuhiko [1 ]
Yanagishita, Masahiro [2 ]
机构
[1] Waseda Univ, Sch Educ, Dept Math, Tokyo, Japan
[2] Yamaguchi Univ, Grad Sch Sci & Technol Innovat, Dept Appl Sci, Yamaguchi, Yamaguchi, Japan
关键词
integrable Teichmuller space; barycentric extension; complex dilatation; quasiconformal; asymptotically conformal; Teichmuller projection; Bers embedding; HOMEOMORPHISMS;
D O I
10.2298/FIL1701085M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first remark that the complex dilatation of a quasiconformal homeomorphism of a hyperbolic Riemann surface R obtained by the barycentric extension due to Douady-Earle vanishes at any cusp of R. Then we give a new proof, without using the Bers embedding, of a fact that the quasiconformal homeomorphism obtained by the barycentric extension from an integrable Beltrami coe ffi cient on R is asymptotically conformal if R satisfies a certain geometric condition.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 9 条