Minimal n-noids in hyperbolic and anti-de Sitter 3-space

被引:4
作者
Bobenko, Alexander I. [1 ]
Heller, Sebastian [2 ]
Schmitt, Nicholas [1 ]
机构
[1] TU Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[2] Univ Hamburg, Fachbereich Math, D-20146 Hamburg, Germany
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2019年 / 475卷 / 2227期
关键词
minimal surfaces; AdS/CFT correspondence; integrable systems; loop groups; CONSTANT MEAN-CURVATURE; SURFACES; SPACE; REPRESENTATION;
D O I
10.1098/rspa.2019.0173
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We construct minimal surfaces in hyperbolic and anti-de Sitter 3-space with the topology of a n-punctured sphere by loop group factorization methods. The end behaviour of the surfaces is based on the asymptotics of Delaunay-type surfaces, i.e. rotational symmetric minimal cylinders. The minimal surfaces in H-3 extend to Willmore surfaces in the conformal 3-sphere S-3 = H-3 boolean OR S-2 boolean OR H-3.
引用
收藏
页数:25
相关论文
共 33 条
[1]   Gluon scattering amplitudes at strong coupling [J].
Alday, Luis F. ;
Maldacena, Juan .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (06)
[2]   Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space [J].
Alday, Luis F. ;
Maldacena, Juan .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (11)
[3]  
[Anonymous], CONT MATH, DOI [10.1090/conm/308/05311, DOI 10.1090/CONM/308/05311]
[4]   WILLMORE TORI WITH UMBILIC LINES AND MINIMAL-SURFACES IN HYPERBOLIC SPACE [J].
BABICH, M ;
BOBENKO, A .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (01) :151-185
[5]   On elliptic string solutions in AdS3 and dS3 [J].
Bakas, Ioannis ;
Pastras, Georios .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07)
[6]   THE PAINLEVE-III EQUATION AND THE IWASAWA DECOMPOSITION [J].
BOBENKO, A ;
ITS, A .
MANUSCRIPTA MATHEMATICA, 1995, 87 (03) :369-377
[7]  
BOBENKO AI, 1991, USP MAT NAUK, V46, P3, DOI DOI 10.1070/RM1991V046N04ABEH002826
[8]   Holomorphic representation of constant mean curvature surfaces in Minkowski space: Consequences of non-compactness in loop group methods [J].
Brander, David ;
Rossman, Wayne ;
Schmitt, Nicholas .
ADVANCES IN MATHEMATICS, 2010, 223 (03) :949-986
[9]   Weierstrass type representation of harmonic maps into symmetric spaces [J].
Dorfmeister, J ;
Pedit, F ;
Wu, H .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1998, 6 (04) :633-668
[10]   Constant mean curvature surfaces in hyperbolic 3-space via loop groups [J].
Dorfmeister, Josef F. ;
Inoguchi, Jun-ichi ;
Kobayashi, Shimpei .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 686 :1-36