Role of Defects and Surface States in the Carrier Transport and Nonlinearity of the Diode Characteristics in PbS/ZnO Quantum Dot Solar Cells

被引:17
作者
Cheng, Y. [1 ]
Whitaker, M. D. C. [1 ]
Makkia, R. [1 ]
Cocklin, S. [1 ]
Whiteside, V. R. [1 ]
Bumm, L. A. [1 ]
Adcock-Smith, E. [2 ]
Roberts, K. P. [2 ]
Hari, P. [3 ]
Sellers, I. R. [1 ]
机构
[1] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA
[2] Univ Tulsa, Dept Chem & Biochem, 800 South Tucker Dr, Tulsa, OK 74104 USA
[3] Univ Tulsa, Dept Phys & Engn Phys, 800 South Tucker Dr, Tulsa, OK 74104 USA
关键词
PbS quantum dots; mid-gap states; Schottky diodes; impedance spectroscopy; tunneling; HIGH IDEALITY FACTORS; THEORETICAL-MODEL; SEMICONDUCTOR; PHOTOVOLTAICS; EFFICIENCY; IMPEDANCE; NANOCRYSTALS; SOLIDS; OXIDE;
D O I
10.1021/acsami.7b00141
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The roles of bulk surface states and interfacial defects are probed experimentally using a combination of current-voltage, capacitance voltage, and impedance measurements. The critical importance of the quality of both the film and interfaces is evident in current voltage measurements where shunting and interface states result in large dark currents and the Subsequent loss of J(SC). These properties are shown to be critically related to the nature and role of the PbS QD interface with the (nominally) ohmic gold contact. Specifically, the nonideality of this interface results in the formation of an electric field and therefore a Schottky barrier that opposes the transport of carriers across the conventional ZnO-PbS CQD system. Nonidealities in the structure and absorber layer are also reflected in nonmonotonic behavior and dispersion in C-V measurements with trapping processes on the CQD surfaces, and the ZnO/PbS and PbS/Au interfaces also affecting the carrier dynamics, which is reflected in the response time of these systems under different biases,
引用
收藏
页码:13269 / 13277
页数:9
相关论文
共 56 条
[1]  
Barsoukov E, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, pXII
[2]   A variable series resistance mechanism to explain the negative capacitance observed in impedance spectroscopy measurements of nanostructured solar cells [J].
Bisquert, Juan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (10) :4679-4685
[3]  
Bondarenko AS, 2005, PROGRESS IN CHEMOMETRICS RESEARCH, P89
[4]   Quantification of Deep Traps in Nanocrystal Solids, Their Electronic Properties, and Their Influence on Device Behavior [J].
Bozyigit, Deniz ;
Volk, Sebastian ;
Yarema, Olesya ;
Wood, Vanessa .
NANO LETTERS, 2013, 13 (11) :5284-5288
[5]   BN/ZnO heterojunction diodes with apparently giant ideality factors [J].
Broetzmann, M. ;
Vetter, U. ;
Hofsaess, H. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (06)
[6]   Improved Current Extraction from ZnO/PbS Quantum Dot Heterojunction Photovoltaics Using a MoO3 Interfacial Layer [J].
Brown, Patrick R. ;
Lunt, Richard R. ;
Zhao, Ni ;
Osedach, Timothy P. ;
Wanger, Darcy D. ;
Chang, Liang-Yi ;
Bawendi, Moungi G. ;
Bulovic, Vladimir .
NANO LETTERS, 2011, 11 (07) :2955-2961
[7]   Low-Temperature Solution-Processed Solar Cells Based on PbS Colloidal Quantum Dot/CdS Heterojunctions [J].
Chang, Liang-Yi ;
Lunt, Richard R. ;
Brown, Patrick R. ;
Bulovic, Vladimir ;
Bawendi, Moungi G. .
NANO LETTERS, 2013, 13 (03) :994-999
[8]   Investigation of InAs/GaAs1-xSbx quantum dots for applications in intermediate band solar cells [J].
Cheng, Y. ;
Fukuda, M. ;
Whiteside, V. R. ;
Debnath, M. C. ;
Vallely, P. J. ;
Mishima, T. D. ;
Santos, M. B. ;
Hossain, K. ;
Hatch, S. ;
Liu, H. Y. ;
Sellers, I. R. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 147 :94-100
[9]   Quantum Dot Solar Cell Fabrication Protocols [J].
Chernomordik, Boris D. ;
Marshall, Ashley R. ;
Pach, Gregory F. ;
Luther, Joseph M. ;
Beard, Matthew C. .
CHEMISTRY OF MATERIALS, 2017, 29 (01) :189-198
[10]   High-quality p-n junctions with quaternary AlInGaN/InGaN quantum wells [J].
Chitnis, A ;
Kumar, A ;
Shatalov, M ;
Adivarahan, V ;
Lunev, A ;
Yang, JW ;
Simin, G ;
Khan, MA ;
Gaska, R ;
Shur, M .
APPLIED PHYSICS LETTERS, 2000, 77 (23) :3800-3802