ON HERMITE-HADAMARD TYPE INEQUALITIES FOR F-CONVEX FUNCTION

被引:3
|
作者
Budak, H. [1 ]
Tunc, T. [1 ]
Sarikaya, M. Z. [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math Duzce, Duzce, Turkey
关键词
Hermite-Hadamard inequality; F-convex; midpoint inequality; trapezoid inequality; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.18514/MMN.2019.2436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we firstly give some properties the family F and F-convex function which are defined by B. Samet. Then, we obtain some midpoint inequalities for differentiable function. Moreover, we establish some midpoint and trapezoid type inequalities for function whose second derivatives in absolute value are F-convex.
引用
收藏
页码:169 / 191
页数:23
相关论文
共 50 条
  • [21] Refinements of Hermite-Hadamard type inequalities for operator convex functions
    Bacak, Vildan
    Turkmen, Ramazan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [22] New inequalities of hermite-hadamard type for convex functions with applications
    Havva Kavurmaci
    Merve Avci
    M Emin Özdemir
    Journal of Inequalities and Applications, 2011
  • [23] ON SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR CERTAIN CONVEX FUNCTIONS
    Tunc, Mevlut
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2014, 15 (01): : 3 - 10
  • [24] Hermite-Hadamard type inequalities for multiplicatively harmonic convex functions
    Ozcan, Serap
    Butt, Saad Ihsan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [25] ON NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR GENERALIZED CONVEX FUNCTIONS
    Qaisar, Shahid
    He, Chuanjiang
    Hussain, Sabir
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 139 - 148
  • [26] Refinements of Hermite-Hadamard type inequalities for operator convex functions
    Vildan Bacak
    Ramazan Türkmen
    Journal of Inequalities and Applications, 2013 (1)
  • [27] Hermite-Hadamard type inequalities for operator geometrically convex functions
    Taghavi, A.
    Darvish, V.
    Nazari, H. M.
    Dragomir, S. S.
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (01): : 187 - 203
  • [28] EXPONENTIAL TRIGONOMETRIC CONVEX FUNCTIONS AND HERMITE-HADAMARD TYPE INEQUALITIES
    Kadakal, Mahir
    Iscan, Imdat
    Agarwal, Praveen
    Jleli, Mohamed
    MATHEMATICA SLOVACA, 2021, 71 (01) : 43 - 56
  • [29] New discrete inequalities of Hermite-Hadamard type for convex functions
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Alqudah, Manar A.
    Jarad, Fahd
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [30] HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS
    Aslani, S. Mohammadi
    Delavar, M. Rostamian
    Vaezpour, S. M.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (01) : 17 - 33