Interphases in Sodium-Ion Batteries

被引:316
作者
Song, Junhua [1 ,2 ]
Xiao, Biwei [1 ]
Lin, Yuehe [2 ]
Xu, Kang [3 ]
Li, Xiaolin [1 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[2] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
[3] US Army Res Lab, Electrochem Branch, Energy & Power Div, Sensor & Elect Directorate, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
关键词
anode solid electrolyte interphases; cathode solid electrolyte interphases; interphase functionalities; sodium-ion batteries; SOLID-ELECTROLYTE INTERPHASE; ATOMIC-LAYER-DEPOSITION; ETHER-BASED ELECTROLYTE; LITHIUM-ION; LI-ION; HIGH-CAPACITY; HARD-CARBON; HIGH-PERFORMANCE; NEGATIVE ELECTRODE; GRAPHITE ANODE;
D O I
10.1002/aenm.201703082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion batteries (SIBs) as economical, high energy alternatives to lithium-ion batteries (LIBs) have received significant attention for large-scale energy storage in the last few years. While the efforts of developing SIBs have benefited from the knowledge learned in LIBs, thanks to the apparent proximity between Na-ions and Li-ions, the unique physical and chemical properties of Na-ions also distinctly differ themselves from Li-ions. It is expected that SIBs have drastically different electrode material structure, solvation-desolvation behavior, electrode-electrolyte interphase stabilities, ion transfer properties, and hence electrochemical performance of batteries. In this review, the authors comprehensively summarize the current understanding of the anode solid electrolyte interphase and cathode electrolyte interphase in SIBs, with an emphasis on how the tuning of the stability and ion transfer properties of interphases fundamentally determines the reversibility and efficiency of electrochemical reactions. Through these carefully screened references, the authors intend to reveal the intrinsic correlation between the properties/functionalities of the interphases and the electrochemical performance of batteries.
引用
收藏
页数:24
相关论文
共 147 条
[1]   Correlation between cointercalation of solvents and electrochemical intercalation of lithium into graphite in propylene carbonate solution [J].
Abe, T ;
Kawabata, N ;
Mizutani, Y ;
Inaba, M ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (03) :A257-A261
[2]   Mechanistic Insight into the Stability of HfO2-Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries [J].
Ahmed, Bilal ;
Anjum, Dalaver H. ;
Hedhili, Mohamed N. ;
Alshareef, Husam N. .
SMALL, 2015, 11 (34) :4341-4350
[3]   Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries [J].
Alcántara, R ;
Lavela, P ;
Ortiz, GF ;
Tirado, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (04) :A222-A225
[4]   NiCo2O4 spinel:: First report on a transition metal oxide for the negative electrode of sodium-ion batteries [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL .
CHEMISTRY OF MATERIALS, 2002, 14 (07) :2847-+
[5]   Chemical composition and morphology of the elevated temperature SEI on graphite [J].
Andersson, AM ;
Edström, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1100-A1109
[6]   LAMELLAR COMPOUND OF SODIUM WITH GRAPHITE [J].
ASHER, RC ;
WILSON, SA .
NATURE, 1958, 181 (4606) :409-410
[7]  
Atkins P., 2010, Shriver and Atkins inorganic chemistry
[8]   Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems [J].
Aurbach, D ;
Zaban, A ;
Ein-Eli, Y ;
Weissman, I ;
Chusid, O ;
Markovsky, B ;
Levi, M ;
Levi, E ;
Schechter, A ;
Granot, E .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :91-98
[9]   THE CORRELATION BETWEEN THE SURFACE-CHEMISTRY AND THE PERFORMANCE OF LI-CARBON INTERCALATION ANODES FOR RECHARGEABLE ROCKING-CHAIR TYPE BATTERIES [J].
AURBACH, D ;
EINELI, Y ;
CHUSID, O ;
CARMELI, Y ;
BABAI, M ;
YAMIN, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (03) :603-611
[10]   Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory [J].
Baggetto, Loic ;
Ganesh, P. ;
Meisner, Roberta P. ;
Unocic, Raymond R. ;
Jumas, Jean-Claude ;
Bridges, Craig A. ;
Veith, Gabriel M. .
JOURNAL OF POWER SOURCES, 2013, 234 :48-59