Combustion performances of premixed ammonia/hydrogen/air laminar and swirling flames for a wide range of equivalence ratios

被引:63
作者
Mashruk, S. [1 ]
Zitouni, S. E. [2 ]
Brequigny, P. [2 ]
Mounaim-Rousselle, C. [2 ]
Valera-Medina, A. [1 ]
机构
[1] Cardiff Univ, Coll Phys Sci & Engn, Cardiff, Wales
[2] Univ Orleans, Lab PRISME EA 4229, F-45072 Orleans, France
基金
英国工程与自然科学研究理事会;
关键词
Ammonia; Hydrogen; Flame speed; NOX; Chemiluminescence; NITROGEN CHEMISTRY; BURNING VELOCITY; HIGH-TEMPERATURE; AMMONIA; OXIDATION; FUEL; NOX; MECHANISM; HYDROGEN; REDUCTION;
D O I
10.1016/j.ijhydene.2022.09.165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia, a carbon-free source of hydrogen has recently gained considerable attention as energy solution towards a green future. Previous works have shown that adding 30VOL.% hydrogen with ammonia can eradicate the drawbacks of pure ammonia combustion but no study in the literature has investigated this blend across a wide range of equivalence ratios. The present work investigates 70/30VOL.% NH3/H2 blend from 0.55 < Phi < 1.4 for both pre-mixed laminar spherically expanding flames and turbulent swirling flames at atmospheric conditions. A detailed chemistry analysis has been conducted in Ansys CHEMKIN-PRO platform using a chemical reactor network (CRN) model to simulate the swirling turbu-lent flames. NO and NO2 emissions have followed similar bell-shaped trends, peaking at around Phi = 0.8, while N2O emission rises at lean conditions (Phi < 0.7). The results indicate that Phi = 1.2 is the optimum equivalence ratio with reduced NOX emissions and some ammonia slip.(c) 2022 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
引用
收藏
页码:41170 / 41182
页数:13
相关论文
共 69 条
[1]   Experimental and numerical analyses of nitrogen oxides formation in a high ammonia-low hydrogen blend using a tangential swirl burner [J].
Alnasif, A. ;
Mashruk, S. ;
Kovaleva, M. ;
Wang, P. ;
Valera-Medina, A. .
CARBON NEUTRALITY, 2022, 1 (01)
[2]   A shock-tube study of NH3 and NH3/H-2 oxidation using laser absorption of NH3 and H2O [J].
Alturaifi, Sulaiman A. ;
Mathieu, Olivier ;
Petersen, Eric L. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (01) :233-241
[3]  
[Anonymous], 2022, Global hydrogen trade to meet the 1.5C climate goal
[4]  
Atchison J, 2022, JERA Targets 50% Ammonia-Coal Co-Firing by 2030: Four Critical Ammonia Energy Projects Included in New Funding Announcement'
[5]   Diagnostic techniques for the monitoring and control of practical flames [J].
Ballester, Javier ;
Garcia-Armingol, Tatiana .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2010, 36 (04) :375-411
[6]   Chemiluminescence as a diagnostic in studying combustion instability in a practical combustor [J].
Bedard, Michael J. ;
Fuller, Tristan L. ;
Sardeshmukh, Swanand ;
Anderson, William E. .
COMBUSTION AND FLAME, 2020, 213 :211-225
[7]   Humidified ammonia/hydrogen RQL combustion in a trigeneration gas turbine cycle [J].
Bozo, M. Gutesa ;
Mashruk, S. ;
Zitouni, S. ;
Valera-Medina, A. .
ENERGY CONVERSION AND MANAGEMENT, 2021, 227
[8]   Structure of premixed ammonia plus air flames at atmospheric pressure: Laser diagnostics and kinetic modeling [J].
Brackmann, Christian ;
Alekseev, Vladimir A. ;
Zhou, Bo ;
Nordstrom, Emil ;
Bengtsson, Per-Erik ;
Li, Zhongshan ;
Alden, Marcus ;
Konnov, Alexander A. .
COMBUSTION AND FLAME, 2016, 163 :370-381
[9]  
d'Agostino R., 1981, Plasma Chem. Plasma Proc, V1, P19, DOI DOI 10.1007/BF00566373
[10]   Ammonia combustion at elevated pressure and temperature conditions [J].
Duynslaegher, C. ;
Jeanmart, H. ;
Vandooren, J. .
FUEL, 2010, 89 (11) :3540-3545