Optimal control of unilateral obstacle problem with a source term

被引:6
作者
Ghanem, Radouen [1 ,2 ]
机构
[1] Univ Badji Mokhtar, Dept Math LANOS, Annaba 23000, Algeria
[2] Univ Orleans, F-45067 Orleans 2, France
关键词
Optimal control; variational inequality; REGULARITY;
D O I
10.1007/s11117-008-2241-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an optimal control problem for the obstacle problem with an elliptic variational inequality. The obstacle function which is the control function is assumed in H-2. We use an approximate technique to introduce a family of problems governed by variational equations. We prove optimal solutions existence and give necessary optimality conditions.
引用
收藏
页码:321 / 338
页数:18
相关论文
共 16 条
[1]   Optimal control of the obstacle for an elliptic variational inequality [J].
Adams, DR ;
Lenhart, SM ;
Yong, J .
APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (02) :121-140
[2]   Uptake and reaction of HOBr on frozen and dry NaCl/NaBr surfaces between 253 and 233 K [J].
Adams, JW ;
Holmes, NS ;
Crowley, JN .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2002, 2 :79-91
[3]   APPROXIMATING OPTIMAL CONTROLS FOR ELLIPTIC OBSTACLE PROBLEM BY MONOTONE ITERATION SCHEMES [J].
BARBU, V ;
KORMAN, P .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1991, 12 (5-6) :429-442
[4]  
Barbu V., 1984, RES NOTES MATH, V100
[5]   Optimal control of the obstacle in semilinear variational inequalities [J].
Bergounioux, M ;
Lenhart, S .
POSITIVITY, 2004, 8 (03) :229-242
[6]   Optimal control of bilateral obstacle problems [J].
Bergounioux, M ;
Lenhart, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (01) :240-255
[7]  
Bergounioux M., 2002, J NONLINEAR CONVEX A, V3, P25
[8]  
BREZIS HR, 1968, B SOC MATH FR, V96, P153
[9]  
Friedman A., 1988, Variational Principles and Free-Boundary Problems, V2 2
[10]  
Gilbarg David, 1977, Elliptic Partial Differential Equations of Second order, V224