Global total variation minimization

被引:39
|
作者
Dibos, F
Koepfler, G
机构
[1] Univ Paris 09, CNRS, URA 749, CEREMADE, F-75775 Paris 16, France
[2] Univ Paris 05, UFR Math & Informat, PRISME, F-75270 Paris, France
关键词
total variation; image denoising; minimization; level set;
D O I
10.1137/S0036142998334838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The minimization of the total variation is an important tool of image processing. A lot of authors have addressed the problem and developed algorithms for image denoising. In this paper we present an alternative approach of the total variation minimization problem. After an introduction to the topic and a review of related work, we give a short development of the bounded variation (BV) background. Then we present our global total variation minimization model and proof its validity. Furthermore we introduce a practical algorithm which handles digital image data and we give experimental results.
引用
收藏
页码:646 / 664
页数:19
相关论文
共 50 条
  • [41] Combined complex ridgelet shrinkage and total variation minimization
    Ma, Jianwei
    Fenn, Markus
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 984 - 1000
  • [42] Speckle reduction in ultrasound images by minimization of total variation
    Djemal, K
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 3797 - 3800
  • [43] Efficient Minimization Method for a Generalized Total Variation Functional
    Rodriguez, Paul
    Wohlberg, Brendt
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (02) : 322 - 332
  • [44] Compressive hyperspectral imaging using total variation minimization
    Lee, Dennis J.
    Shields, Eric A.
    IMAGING SPECTROMETRY XXII: APPLICATIONS, SENSORS, AND PROCESSING, 2018, 10768
  • [45] Reconstruction of wavelet coefficients using total variation minimization
    Durand, S
    Froment, J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (05): : 1754 - 1767
  • [46] Seislet transform denoising based on total variation minimization
    ZHANG Peng
    LIU Yang
    LIU Cai
    CUI Fangzi
    YANG Xueting
    PEI Sijia
    GlobalGeology, 2015, 18 (01) : 59 - 66
  • [47] On Semismooth Newton’s Methods for Total Variation Minimization
    Michael K. Ng
    Liqun Qi
    Yu-fei Yang
    Yu-mei Huang
    Journal of Mathematical Imaging and Vision, 2007, 27 : 265 - 276
  • [48] Stable Image Reconstruction Using Total Variation Minimization
    Needell, Deanna
    Ward, Rachel
    SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (02): : 1035 - 1058
  • [49] On-The-Fly Approximation of Multivariate Total Variation Minimization
    Frecon, Jordan
    Pustelnik, Nelly
    Abry, Patrice
    Condat, Laurent
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (09) : 2355 - 2364
  • [50] On semismooth Newton's methods for total variation minimization
    Ng, Michael K.
    Qi, Liqun
    Yang, Yu-Fei
    Huang, Yu-Mei
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2007, 27 (03) : 265 - 276