Experimental investigation of direct injection charge cooling in optical GDI engine using tracer-based PLIF technique

被引:21
作者
Attar, Mohammadreza Anbari [1 ]
Herfatmanesh, Mohammad Reza [2 ]
Zhao, Hua [1 ]
Cairns, Alasdair [1 ]
机构
[1] Brunel Univ, Ctr Adv Powertrain & Fuels Res, London, England
[2] Univ Hertfordshire, Sch Engn & Technol, Hatfield AL10 9AB, Herts, England
基金
英国工程与自然科学研究理事会;
关键词
Planar Laser Induced Fluorescence (PLIF); Thermometry; Direct injection charge cooling; Gasoline direct injection; LASER-INDUCED FLUORESCENCE; TEMPERATURE; ACETONE; EFFICIENCY; KETONES; OCTANE;
D O I
10.1016/j.expthermflusci.2014.07.020
中图分类号
O414.1 [热力学];
学科分类号
摘要
Investigation of direct injection charge cooling effects is indispensable in design and development of new combustion systems for Gasoline Direct Injection (GDI) engines. The charge cooling can be utilized to increase engine volumetric efficiency or compression ratio. It can be employed to suppress pre-ignition of highly boosted downsized engines or knocking combustion of naturally aspirated engines. The main purpose of this work was to develop an experimental setup for quantitative measurements of charge cooling during fuel injection process inside the combustion chamber of a GDI engine with optical access. For this purpose a tracer-based two-line Planar Laser Induced Fluorescence (PLIF) technique was implemented for the measurements. A specially designed Constant Volume Chamber (CVC) was utilized for quasi in situ calibration measurement so in-cylinder charge temperature measurements can be achieved independent of the photophysical model of dopant tracer. The thermometry technique was evaluated by measurements of average in-cylinder charge temperature during compression stroke for both motoring and firing cycles and comparing the results with temperature values calculated from in-cylinder pressure data assuming a polytropic compression. The PLIF technique was successfully utilized to quantify the extend of global temperature decrease as a result of direct injection charge cooling of two injection timings of 90 and 250 degrees CA ATDC and two injection quantities of 10 and 30 mg/cycle. Test results demonstrated the capability of the two-line PLIF thermometry technique in quantitative study of direct injection charge cooling effects. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:96 / 108
页数:13
相关论文
共 68 条
[1]  
Achleitner E., 2007, 2007011416 SAE
[2]  
Ahn K, 2010, 2010010166 SAE
[3]  
Anderson W, 1996, 962018 SAE
[4]  
[Anonymous], 2007, 2007014058 SAE
[5]  
[Anonymous], 2003, 2003010754 SAE
[6]  
[Anonymous], 2001011204 SAE
[7]  
[Anonymous], 2005, 2005010133 SAE
[8]  
Aoyama T., 1996, An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engine, DOI DOI 10.4271/960081
[9]  
Baritaud T.A., 1992, SAE TECHNICAL PAPER
[10]  
Blaxill H., 2009, 2009011052 SAE