Boundary value problem for a class of degenerate quasilinear parabolic equations with singularity

被引:4
作者
Lei, PD [1 ]
Wu, ZQ [1 ]
Yin, JX [1 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
关键词
arbitrary degeneracy; singularity; generalized solutions;
D O I
10.1016/j.jmaa.2004.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a class of quasilinear parabolic equations with singularity and arbitrary degeneracy. The existence and uniqueness of generalized solutions to a kind of boundary value problem is established. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:209 / 225
页数:17
相关论文
共 16 条
[1]  
[Anonymous], 1970, MATH USSR SB
[2]   HYPERBOLIC PHENOMENA IN A STRONGLY DEGENERATE PARABOLIC EQUATION [J].
BERTSCH, M ;
DALPASSO, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 117 (04) :349-387
[3]  
Burger R, 1998, MATH METHOD APPL SCI, V21, P865
[4]   On strongly degenerate convection-diffusion problems modeling sedimentation-consolidation processes [J].
Bürger, R ;
Evje, S ;
Karlsen, KH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 247 (02) :517-556
[5]   Existence and stability for mathematical models of sedimentation-consolidation processes in several space dimensions [J].
Bürger, R ;
Liu, C ;
Wendland, WL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (02) :288-310
[6]   Entropy solutions for nonlinear degenerate problems [J].
Carrillo, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (04) :269-361
[7]   Discrete approximations of BV solutions to doubly nonlinear degenerate parabolic equations [J].
Evje, S ;
Karlsen, KH .
NUMERISCHE MATHEMATIK, 2000, 86 (03) :377-417
[8]  
GAGNEUX G, 1994, CR ACAD SCI I-MATH, V318, P919
[9]  
KARLSEN KH, 2000, 143 U BERG DEP MATH
[10]   On solutions to nonlinear reaction-diffusion-convection equations with degenerate diffusion [J].
Lu, YG ;
Jäger, W .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 170 (01) :1-21