The Asymptotic Behavior of INAR (p) Models

被引:1
|
作者
Tang, Mingtian [1 ]
Wang, Yunyan [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Sci, Ganzhou 341000, Jiangxi, Peoples R China
关键词
Markov chains; Geometric ergodicity; Nonlinear time series; Random environment; Random time delay; AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY; TIME-SERIES;
D O I
10.1080/03610926.2012.694544
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An integer-valued autoregressive model with random time delay under random environment is presented. The geometric ergodicity of the iterative sequence determined by this new model is discussed. Moreover, sufficient conditions for stationarity and beta-mixing property with exponential decay for the INAR model with random time delay under random environment are developed.
引用
收藏
页码:3047 / 3056
页数:10
相关论文
共 50 条
  • [21] Treating missing values in INAR(1) models: An application to syndromic surveillance data
    Andersson, Jonas
    Karlis, Dimitris
    JOURNAL OF TIME SERIES ANALYSIS, 2010, 31 (01) : 12 - 19
  • [22] Inference for INAR(p) processes with signed generalized power series thinning operator
    Zhang, Haixiang
    Wang, Dehui
    Zhu, Fukang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (03) : 667 - 683
  • [23] On Generalized Random Environment INAR Models of Higher Order: Estimation of Random Environment States
    Pirkovic, Bogdan A.
    Laketa, Petra N.
    Nastic, Aleksandar S.
    FILOMAT, 2021, 35 (13) : 4545 - 4576
  • [24] On Asymptotic Theory for ARCH (∞) Models
    Hafner, Christian M.
    Preminger, Arie
    JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (06) : 865 - 879
  • [25] Stationarity testing under nonlinear models. Some asymptotic results
    Landajo, Manuel
    Jose Presno, Maria
    JOURNAL OF TIME SERIES ANALYSIS, 2010, 31 (05) : 392 - 405
  • [26] On asymptotic theory for multivariate GARCH models
    Hafner, Christian M.
    Preminger, Arie
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (09) : 2044 - 2054
  • [27] A mixed INAR(p) model with serially dependent innovation with application to some COVID-19 data
    Liu, Xiufang
    Yin, Wenzheng
    Zhang, Wenkun
    Chen, Huaping
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (24) : 8819 - 8847
  • [28] ASYMPTOTIC-BEHAVIOR OF THE GIBBS SAMPLER
    CHAN, KS
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 320 - 326
  • [29] The asymptotic covariance matrix of the QMLE in ARMA models
    Bao, Yong
    ECONOMETRIC REVIEWS, 2018, 37 (04) : 309 - 324
  • [30] Asymptotic behavior of the prediction error for stationary sequences
    Babayan, Nikolay M.
    Ginovyan, Mamikon S.
    PROBABILITY SURVEYS, 2023, 20 : 664 - 721