Geometry of shrinking Ricci solitons

被引:56
作者
Munteanu, Ovidiu [1 ]
Wang, Jiaping [2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06268 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Ricci solitons; curvature estimates; diameter; CLASSIFICATION; DIAMETER; BOUNDS;
D O I
10.1112/S0010437X15007496
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to investigate the curvature behavior of four-dimensional shrinking gradient Ricci solitons. For such a soliton M with bounded scalar curvature S, it is shown that the curvature operator Rm of M satisfies the estimate vertical bar Rm vertical bar <= cS for some constant c. Moreover, the curvature operator Rm is asymptotically nonnegative at infinity and admits a lower bound Rm >= -c(ln(r + 1))(-1/4), where r is the distance function to a fixed point in M. As an application, we prove that if the scalar curvature converges to zero at infinity, then the soliton must be asymptotically conical. As a separate issue, a diameter upper bound for compact shrinking gradient Ricci solitons of arbitrary dimension is derived in terms of the injectivity radius.
引用
收藏
页码:2273 / 2300
页数:28
相关论文
共 27 条
  • [21] Munteanu O, 2011, MATH RES LETT, V18, P1051
  • [22] Munteanu O, 2011, COMMUN ANAL GEOM, V19, P451
  • [23] Noncompact shrinking four solitons with nonnegative curvature
    Naber, Aaron
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 645 : 125 - 153
  • [24] Ni L, 2008, MATH RES LETT, V15, P941
  • [25] Perelman G, 2002, PREPRINT
  • [26] On the classification of gradient Ricci solitons
    Petersen, Peter
    Wylie, William
    [J]. GEOMETRY & TOPOLOGY, 2010, 14 (04) : 2277 - 2300
  • [27] SHI WX, 1989, J DIFFER GEOM, V30, P223