Geometry of shrinking Ricci solitons

被引:56
作者
Munteanu, Ovidiu [1 ]
Wang, Jiaping [2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06268 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Ricci solitons; curvature estimates; diameter; CLASSIFICATION; DIAMETER; BOUNDS;
D O I
10.1112/S0010437X15007496
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to investigate the curvature behavior of four-dimensional shrinking gradient Ricci solitons. For such a soliton M with bounded scalar curvature S, it is shown that the curvature operator Rm of M satisfies the estimate vertical bar Rm vertical bar <= cS for some constant c. Moreover, the curvature operator Rm is asymptotically nonnegative at infinity and admits a lower bound Rm >= -c(ln(r + 1))(-1/4), where r is the distance function to a fixed point in M. As an application, we prove that if the scalar curvature converges to zero at infinity, then the soliton must be asymptotically conical. As a separate issue, a diameter upper bound for compact shrinking gradient Ricci solitons of arbitrary dimension is derived in terms of the injectivity radius.
引用
收藏
页码:2273 / 2300
页数:28
相关论文
共 27 条
  • [1] Rotational symmetry of self-similar solutions to the Ricci flow
    Brendle, Simon
    [J]. INVENTIONES MATHEMATICAE, 2013, 194 (03) : 731 - 764
  • [2] Cao H.-D., 2008, SURVEYS DIFFERENTIAL, V12, P47
  • [3] Cao H.D., 2010, RECENT ADV GEOMETRIC, V11, P1
  • [4] ON BACH-FLAT GRADIENT SHRINKING RICCI SOLITONS
    Cao, Huai-Dong
    Chen, Qiang
    [J]. DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) : 1149 - 1169
  • [5] Cao HD, 2010, J DIFFER GEOM, V85, P175
  • [6] Chen BL, 2009, J DIFFER GEOM, V82, P363
  • [7] Chow B., 2004, mathematical surveys and monographs, V110
  • [8] Chow B., 2006, Grad. Stud. In Math., V77
  • [9] Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons
    Chow, Bennett
    Lu, Peng
    Yang, Bo
    [J]. COMPTES RENDUS MATHEMATIQUE, 2011, 349 (23-24) : 1265 - 1267
  • [10] Ricci solitons: the equation point of view
    Eminenti, Manolo
    La Nave, Gabriele
    Mantegazza, Carlo
    [J]. MANUSCRIPTA MATHEMATICA, 2008, 127 (03) : 345 - 367