Sea-Ice Melt Driven by Ice-Ocean Stresses on the Mesoscale

被引:27
作者
Gupta, Mukund [1 ]
Marshall, John [1 ]
Song, Hajoon [2 ]
Campin, Jean-Michel [1 ]
Meneghello, Gianluca [1 ]
机构
[1] MIT, Dept Earth Atmosphere & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Yonsei Univ, Dept Atmospher Sci, Seoul, South Korea
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
sea‐ ice; ocean; mesoscale; drag; Antarctica; MIXED-LAYER; HEAT-FLUX; SURFACE TEMPERATURE; EDDIES; MODEL; WIND;
D O I
10.1029/2020JC016404
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The seasonal ice zone around both the Arctic and the Antarctic coasts is typically characterized by warm and salty waters underlying a cold and fresh layer that insulates sea-ice floating at the surface from vertical heat fluxes. Here, we explore how a mesoscale eddy field rubbing against ice at the surface can, through Ekman-induced vertical motion, bring warm waters up to the surface and partially melt the ice. We dub this the "Eddy-Ice-Pumping" (EIP) mechanism. When sea-ice is relatively motionless, underlying mesoscale eddies experience a surface drag that generates Ekman upwelling in anticyclones and downwelling in cyclones. An eddy composite analysis of a Southern Ocean eddying channel model, capturing the interaction of the mesoscale with sea-ice, shows that within the compact ice zone, the mixed layer depth (MLD) is shallow in anticyclones (similar to 20 m) due to sea-ice melt and deep in cyclones (similar to 50-200m) due to brine rejection. "EIP" warms the core of anticyclones without significantly affecting the temperature of cyclones, producing a net upward vertical heat flux that reduces the mean sea-ice thickness by 10% and shoals the MLD by 60% over the course of winter and spring. In the following months, the sea-ice thickness recovers with an overshoot, due to strong negative feedbacks associated with atmospheric cooling and salt stratification. Consequently, the effect of "EIP" does not accumulate over the years, but modulates the seasonal cycle of ice within the compact ice zone.
引用
收藏
页数:20
相关论文
共 69 条
[1]   Ocean heat flux under Antarctic sea ice in the Bellingshausen and Amundsen Seas: two case studies [J].
Ackley, Stephen F. ;
Xie, Hongjie ;
Tichenor, Elizabeth A. .
ANNALS OF GLACIOLOGY, 2015, 56 (69) :200-210
[2]  
Adcroft A, 1997, MON WEATHER REV, V125, P2293, DOI 10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO
[3]  
2
[4]  
[Anonymous], ARCTIC OCEANOGRAPHY, DOI [10.1029/CE049p0097, DOI 10.1029/CE049P0097]
[5]   Mixed layer instabilities and restratification [J].
Boccaletti, Giulio ;
Ferrari, Raffaele ;
Fox-Kemper, Baylor .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2007, 37 (09) :2228-2250
[6]   TOWARD QUANTIFYING THE INCREASING ROLE OF OCEANIC HEAT IN SEA ICE LOSS IN THE NEW ARCTIC [J].
Carmack, E. ;
Polyakov, I. ;
Padman, L. ;
Fer, I. ;
Hunke, E. ;
Hutchings, J. ;
Jackson, J. ;
Kelley, D. ;
Kwok, R. ;
Layton, C. ;
Melling, H. ;
Perovich, D. ;
Persson, O. ;
Ruddick, B. ;
Timmermans, M. -L. ;
Toole, J. ;
Ross, T. ;
Vavrus, S. ;
Winsor, P. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (12) :2079-2105
[7]   Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals [J].
Charrassin, J. -B. ;
Hindell, M. ;
Rintoul, S. R. ;
Roquet, F. ;
Sokolov, S. ;
Biuw, M. ;
Costa, D. ;
Boehme, L. ;
Lovell, P. ;
Coleman, R. ;
Timmermann, R. ;
Meijers, A. ;
Meredith, M. ;
Park, Y. -H. ;
Bailleul, F. ;
Goebel, M. ;
Tremblay, Y. ;
Bost, C. -A. ;
McMahon, C. R. ;
Field, I. C. ;
Fedak, M. A. ;
Guinet, C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (33) :11634-11639
[8]   Global observations of nonlinear mesoscale eddies [J].
Chelton, Dudley B. ;
Schlax, Michael G. ;
Samelson, Roger M. .
PROGRESS IN OCEANOGRAPHY, 2011, 91 (02) :167-216
[9]  
DEWAR WK, 1987, J PHYS OCEANOGR, V17, P1653, DOI 10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO
[10]  
2