Measurability for fuzzy valued functions

被引:31
作者
Kim, YK [1 ]
机构
[1] Donshin Univ, Coll Nat Sci, Dept Math, Choongnam 520714, South Korea
关键词
multifunction; fuzzy mapping; Skorokhod metric; measurability;
D O I
10.1016/S0165-0114(01)00121-X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we characterize the Borel sigma-field of the space of fuzzy sets endowed with the Skorokhod metric. As a result, the measurability for a fuzzy valued function is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:105 / 109
页数:5
相关论文
共 11 条
  • [1] Billingsley P, 1968, CONVERGE PROBAB MEAS
  • [2] MEASURABILITY CONCEPTS FOR FUZZY MAPPINGS
    BUTNARIU, D
    [J]. FUZZY SETS AND SYSTEMS, 1989, 31 (01) : 77 - 82
  • [3] Castaing C, 1977, LECT NOTES MATH, V580, DOI DOI 10.1007/BFB0087686
  • [4] DEBREU G, 1966, 5TH P BERK S MATH ST, V2, P351
  • [5] Jacod J., 2003, LIMIT THEOREMS STOCH
  • [6] Topological properties un the space of fuzzy sets
    Joo, SY
    Kim, YK
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 246 (02) : 576 - 590
  • [7] The Skorokhod topology on space of fuzzy numbers
    Joo, SY
    Kim, YK
    [J]. FUZZY SETS AND SYSTEMS, 2000, 111 (03) : 497 - 501
  • [8] FUZZY DIFFERENTIAL-EQUATIONS
    KALEVA, O
    [J]. FUZZY SETS AND SYSTEMS, 1987, 24 (03) : 301 - 317
  • [9] KLEIN E, 1984, THEORY CORRESPONDENC
  • [10] LIMIT-THEOREMS FOR FUZZY RANDOM-VARIABLES
    KLEMENT, EP
    PURI, ML
    RALESCU, DA
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 407 (1832): : 171 - 182