Measurability for fuzzy valued functions

被引:31
作者
Kim, YK [1 ]
机构
[1] Donshin Univ, Coll Nat Sci, Dept Math, Choongnam 520714, South Korea
关键词
multifunction; fuzzy mapping; Skorokhod metric; measurability;
D O I
10.1016/S0165-0114(01)00121-X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we characterize the Borel sigma-field of the space of fuzzy sets endowed with the Skorokhod metric. As a result, the measurability for a fuzzy valued function is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:105 / 109
页数:5
相关论文
共 11 条
[1]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[2]   MEASURABILITY CONCEPTS FOR FUZZY MAPPINGS [J].
BUTNARIU, D .
FUZZY SETS AND SYSTEMS, 1989, 31 (01) :77-82
[3]  
Castaing C, 1977, LECT NOTES MATH, V580, DOI DOI 10.1007/BFB0087686
[4]  
DEBREU G, 1966, 5TH P BERK S MATH ST, V2, P351
[5]  
Jacod J., 2003, LIMIT THEOREMS STOCH
[6]   Topological properties un the space of fuzzy sets [J].
Joo, SY ;
Kim, YK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 246 (02) :576-590
[7]   The Skorokhod topology on space of fuzzy numbers [J].
Joo, SY ;
Kim, YK .
FUZZY SETS AND SYSTEMS, 2000, 111 (03) :497-501
[8]   FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :301-317
[9]  
KLEIN E, 1984, THEORY CORRESPONDENC
[10]   LIMIT-THEOREMS FOR FUZZY RANDOM-VARIABLES [J].
KLEMENT, EP ;
PURI, ML ;
RALESCU, DA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 407 (1832) :171-182