Light C4 and C5 in 3-polytopes with minimum degree 5

被引:5
作者
Borodin, O. V. [1 ,2 ]
Ivanova, A. O. [3 ]
Woodall, D. R. [4 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Ammosov North Eastern Univ, Yakutsk 677013, Russia
[4] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
俄罗斯基础研究基金会;
关键词
Planar graph; Plane map; Structure properties; 3-polytope; Weight; NORMAL PLANE MAPS; GRAPHS; SUBGRAPHS;
D O I
10.1016/j.disc.2014.06.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let w(P)(C-1) (w(T)(C-1)) be the minimum integer k with the property that every 3-polytope (respectively, every plane triangulation) with minimum degree 5 has an l-cycle with weight, defined as the degree-sum of all vertices, at most k. In 1998, O.V. Borodin and DR. Woodall proved w(T)(C-4) = 25 and w(T)(C-5) = 30. We prove that w(P)(C-4) = 26 and w(P) (C-5) = 30. (C) 2014 Elsevier BM. All rights reserved.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 29 条
  • [11] Describing (d-2)-stars at d-vertices, d ≤ 5, in normal plane maps
    Borodin, Oleg V.
    Ivanova, Anna O.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (17) : 1700 - 1709
  • [12] Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5
    Borodin, Oleg V.
    Ivanova, Anna O.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (17) : 1710 - 1714
  • [13] Borodin OV, 1996, J GRAPH THEOR, V23, P233, DOI 10.1002/(SICI)1097-0118(199611)23:3<233::AID-JGT3>3.0.CO
  • [14] 2-T
  • [15] Light graphs in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight
    Ferencova, Barbora
    Madaras, Tomas
    [J]. DISCRETE MATHEMATICS, 2010, 310 (12) : 1661 - 1675
  • [16] The four color problem
    Franklin, P
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1922, 44 : 225 - 236
  • [17] Grunbaum B., 1975, MATH ASS AM STUDIES, V12, P201
  • [18] Jendrol S, 1999, DISCRETE MATH, V197, P453
  • [19] Light subgraphs of graphs embedded in the plane-A survey
    Jendrol', S.
    Voss, H. -J.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (04) : 406 - 421
  • [20] Jendrol S., 1996, Discuss. Math. Graph Theory, V16, P207, DOI [10.7151/dmgt.1035, DOI 10.7151/DMGT.1035]