Light C4 and C5 in 3-polytopes with minimum degree 5

被引:5
作者
Borodin, O. V. [1 ,2 ]
Ivanova, A. O. [3 ]
Woodall, D. R. [4 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Ammosov North Eastern Univ, Yakutsk 677013, Russia
[4] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
俄罗斯基础研究基金会;
关键词
Planar graph; Plane map; Structure properties; 3-polytope; Weight; NORMAL PLANE MAPS; GRAPHS; SUBGRAPHS;
D O I
10.1016/j.disc.2014.06.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let w(P)(C-1) (w(T)(C-1)) be the minimum integer k with the property that every 3-polytope (respectively, every plane triangulation) with minimum degree 5 has an l-cycle with weight, defined as the degree-sum of all vertices, at most k. In 1998, O.V. Borodin and DR. Woodall proved w(T)(C-4) = 25 and w(T)(C-5) = 30. We prove that w(P)(C-4) = 26 and w(P) (C-5) = 30. (C) 2014 Elsevier BM. All rights reserved.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 29 条
  • [1] BORODIN O, 1992, MATH NACHR, V158, P109
  • [2] BORODIN O., 1989, MAT ZAMETKI, V46, P9
  • [3] Describing faces in plane triangulations
    Borodin, O. V.
    Ivanova, A. O.
    Kostochka, A. V.
    [J]. DISCRETE MATHEMATICS, 2014, 319 : 47 - 61
  • [4] Every 3-polytope with minimum degree 5 has a 6-cycle with maximum degree at most 11
    Borodin, O. V.
    Ivanova, A. O.
    Kostochka, A. V.
    [J]. DISCRETE MATHEMATICS, 2014, 315 : 128 - 134
  • [5] Describing 3-paths in normal plane maps
    Borodin, O. V.
    Ivanova, A. O.
    Jensen, T. R.
    Kostochka, A. V.
    Yancey, M. P.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (23) : 2702 - 2711
  • [6] Colorings of plane graphs: A survey
    Borodin, O. V.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (04) : 517 - 539
  • [7] Borodin O.V., EVERY 3 POLYTO UNPUB
  • [8] Borodin O.V., 1998, DISCUSS MATH GRAPH T, V18, P159, DOI DOI 10.7151/DMGT.1071
  • [9] 5-STARS OF LOW WEIGHT IN NORMAL PLANE MAPS WITH MINIMUM DEGREE 5
    Borodin, Oleg V.
    Ivanova, Anna O.
    Jensen, Tommy R.
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (03) : 539 - 546
  • [10] Describing 3-faces in normal plane maps with minimum degree 4
    Borodin, Oleg V.
    Ivanova, Anna O.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (23) : 2841 - 2847