Compact Embedded Hypersurfaces with Constant Higher Order Anisotropic Mean Curvatures

被引:56
作者
He, Yijun [1 ]
Li, Haizhong [2 ]
Ma, Hui [2 ]
Ge, Jianquan [2 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
WULFF SHAPE; CAPILLARY SURFACES; SCALAR CURVATURE; SPACE-FORMS; STABILITY; GEOMETRY; THEOREM;
D O I
10.1512/iumj.2009.58.3515
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a positive function F on S-n which satisfies a convexity condition, for 1 <= r <= n, we define for hypersurfaces in Rn+1 the r-th anisotropic mean curvature function H-r(F), a generalization of the usual r-th mean curvature function. We prove that a compact embedded hypersurface without boundary in Rn+1 with H-r(F) constant is the Wulff shape, up to translations and homotheties. In the case r = 1, our result is the anisotropic version of Alexandrov's Theorem, which gives an affirmative answer to an open problem of E Morgan.
引用
收藏
页码:853 / 868
页数:16
相关论文
共 23 条
[1]  
Aleksandrov AD., 1956, Vestnik Leningrad. Univ, V11, P5
[2]  
BROTHERS JE, 1994, MICH MATH J, V41, P419
[3]   r-Minimal submanifolds in space forms [J].
Cao, Linfen ;
Li, Haizhong .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 32 (04) :311-341
[4]  
Clarenz U, 2004, INTERFACE FREE BOUND, V6, P351
[5]  
GARDING L, 1959, J MATH MECH, V8, P957
[6]   Integral formula of Minkowski type and new characterization of the Wulff shape [J].
He, Yi Jun ;
Li, Hai Zhong .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (04) :697-704
[7]   A new variational characterization of the Wulff shape [J].
He, Yijun ;
Li, Haizhong .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (04) :377-390
[8]   Stability of anisotropic capillary surfaces between two parallel planes [J].
Koiso, M ;
Palmer, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (03) :275-298
[9]   Geometry and stability of surfaces with constant anisotropic mean curvature [J].
Koiso, M ;
Palmer, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (06) :1817-1852
[10]   Uniqueness theorems for stable anisotropic capillary surfaces [J].
Koiso, Miyuki ;
Palmer, Bennett .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (03) :721-741