Tin Dioxide@Carbon Core-Shell Nanoarchitectures Anchored on Wrinkled Graphene for Ultrafast and Stable Lithium Storage

被引:40
作者
Zhou, Xunfu [1 ]
Liu, Weijian [1 ]
Yu, Xiaoyuan [1 ]
Liu, Yingju [1 ]
Fang, Yueping [1 ]
Klankowski, Steven [2 ]
Yang, Yiqun [2 ]
Brown, James Emery [2 ]
Li, Jun [2 ]
机构
[1] South China Agr Univ, Inst Biomat, Coll Sci, Guangzhou 510642, Guangdong, Peoples R China
[2] Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
tin dioxide; graphene; anode; nanosheets; 3D nanoarchitecture; lithium-ion batteries; ELECTRODE PERFORMANCE ANODES; DOUBLE PROTECTION STRATEGY; ONE-POT SYNTHESIS; SUPERIOR ANODE; RATE CAPABILITY; SNO2; NANOWIRE; NANOPARTICLES; IMPROVE; NANOCOMPOSITE; COMPOSITES;
D O I
10.1021/am5007194
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The SnO2@C@GS composites as a new type of 3D nanoarchitecture have been successfully synthesized by a facile hydrothermal process followed by a sintering strategy. Such a 3D nanoarchitecture is made up of SnO2@C core-shell nanospheres and nanochains anchored on wrinkled graphene sheets (GSs). Transmission electron microscopy shows that these core-shell nanoparticles consist of 3-9 nm diameter secondary SnO2 nanoparticles embedded in about 50 nm diameter primary carbon nanospheres. Large quantities of core-shell nanoparticles are uniformly attached to the surface of wrinkled graphene nanosheets, with a portion of them further connected into nanochains. This new 3D nanoarchitecture consists of two different kinds of carbon-buffering matrixes, i.e., the carbon layer produced by glucose carbonization and the added GS template, leading to enhanced lithium storage properties. The lithium-cycling properties of the SnO2@C@GS composite have been evaluated by galvanostatic discharge-charge cycling and electrochemical impedance spectroscopy. Results show that the SnO2@C@GS composite has discharge capacities of 883.5, 845.7, and 830.5 mA h g(-1) in the 20th, 50th and 100th cycles, respectively, at a current density of 200 mA g(-1) and delivers a desirable discharge capacity of 645.2 mA h g(-1) at a rate of 1680 mA g(-1). This new 3D nanoarchitecture exhibits a high capability and excellent cycling and rate performance, holding great potential as a high-rate and stable anode material for lithium storage.
引用
收藏
页码:7434 / 7443
页数:10
相关论文
共 52 条
  • [1] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [2] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [3] Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
  • [4] SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries
    Chen, Jun Song
    Lou, Xiong Wen
    [J]. SMALL, 2013, 9 (11) : 1877 - 1893
  • [5] One-pot synthesis of carbon coated-SnO2/graphene-sheet nanocomposite with highly reversible lithium storage capability
    Cheng, Jianli
    Xin, Huolin
    Zheng, Haimei
    Wang, Bin
    [J]. JOURNAL OF POWER SOURCES, 2013, 232 : 152 - 158
  • [6] Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries
    Deng, Da
    Kim, Min Gyu
    Lee, Jim Yang
    Cho, Jaephil
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) : 818 - 837
  • [7] SnO2 nanosheet hollow spheres with improved lithium storage capabilities
    Ding, Shujiang
    Lou, Xiong Wen
    [J]. NANOSCALE, 2011, 3 (09) : 3586 - 3588
  • [8] SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties
    Ding, Shujiang
    Luan, Deyan
    Boey, Freddy Yin Chiang
    Chen, Jun Song
    Lou, Xiong Wen
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (25) : 7155 - 7157
  • [9] Intrinsic ripples in graphene
    Fasolino, A.
    Los, J. H.
    Katsnelson, M. I.
    [J]. NATURE MATERIALS, 2007, 6 (11) : 858 - 861
  • [10] Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: a highly efficient anode material for lithium-ion batteries
    Guo, Zai Ping
    Du, Guo Dong
    Nuli, Yanna
    Hassan, Mohd Faiz
    Liu, Hua Kun
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (20) : 3253 - 3257