Steep decrease in the specific membrane resistance in the apical dendrites of hippocampal CA1 pyramidal neurons

被引:10
|
作者
Omori, Toshiaki [1 ,2 ]
Aonishi, Toru [2 ,3 ]
Miyakawa, Hiroyoshi [4 ]
Inoue, Masashi [4 ]
Okada, Masato [1 ,2 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Complex Sci & Engn, Chiba 2778561, Japan
[2] RIKEN, Brain Sci Inst, Wako, Saitama 3510198, Japan
[3] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Dept Computat Intelligence & Syst Sci, Modori Ku, Kanagawa 2268502, Japan
[4] Tokyo Univ Pharm & Life Sci, Sch Life Sci, Lab Cellular Neurobiol, Tokyo 1920392, Japan
关键词
Dendrite; Detailed compartment model; Simulation; Passive membrane property; Extracellular electric field; EPSP spread; Hippocampus; SYNAPTIC POTENTIALS; VOLTAGE ATTENUATION; ELECTRIC-FIELDS; CURRENTS; STIMULATION; LOCATION; SLICES; MOTONEURONS; SIMULATION; CHANNELS;
D O I
10.1016/j.neures.2009.01.012
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Specific membrane resistance (R(m)), distributed non-uniformly over the dendrite, has a substantial effect on neuronal information processing, since it is a major determinant in subthreshold-synaptic integration. From experimental data of dendritic excitatory postsynaptic potential (EPSP) spread, we previously reported that non-uniform R(m) distribution in hippocampal CA1 pyramidal neurons could be expressed as a step function. However, it remains unclear how steeply R(m) decreases. Here, we estimated the R(m) distribution using sigmoid function to evaluate the steepness of decrease in R(m). Simulations were performed to find the distribution which reproduced experimental voltage responses to extracellular electric field applied to CA1 slices, in contrast to the EPSP spread. Distribution estimated from the responses to electric field was a steep-sigmoid function, similar to that from the EPSP spread. R(m) in distal dendrite was estimated to be less than or similar to 10(3.5) Omega cm(2) whereas that in proximal dendrite/soma was greater than or similar to 10(4.5) Omega cm(2). Our results not only supported previous studies, but, surprisingly, implied that R(m) decreases at a location more distal, and that distal dendrite was leakier, than previous estimates by other groups. Simulations satisfactorily reproduced the responses to two distinct perturbations, suggesting that steep decrease in R. is reliable. Our study suggests that the non-uniform Rm distribution plays an important role in information processing for spatially segregated synaptic inputs. (C) 2009 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
引用
收藏
页码:83 / 95
页数:13
相关论文
共 50 条
  • [41] STIMULATION-MEDIATED TRANSLOCATION OF CALMODULIN AND NEUROGRANIN FROM SOMA TO DENDRITES OF MOUSE HIPPOCAMPAL CA1 PYRAMIDAL NEURONS
    Huang, K. -P.
    Huang, F. L.
    Shetty, P. K.
    NEUROSCIENCE, 2011, 178 : 1 - 12
  • [42] Ventral Hippocampal CA1 Pyramidal Neurons Encode Nociceptive Information
    Yue Wang
    Naizheng Liu
    Longyu Ma
    Lupeng Yue
    Shuang Cui
    Feng-Yu Liu
    Ming Yi
    You Wan
    Neuroscience Bulletin, 2024, 40 : 201 - 217
  • [43] Differential cycling rates of Kv4.2 channels in proximal and distal dendrites of hippocampal CA1 pyramidal neurons
    Nestor, Michael W.
    Hoffman, Dax A.
    HIPPOCAMPUS, 2012, 22 (05) : 969 - 980
  • [44] Development of Action Potential Waveform in Hippocampal CA1 Pyramidal Neurons
    Sanchez-Aguilera, Alberto
    Monedero, Gonzalo
    Colinoa, Asuncion
    Vicente-Torres, Maria Angeles
    NEUROSCIENCE, 2020, 442 : 151 - 167
  • [45] Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal neurons
    Magee, JC
    JOURNAL OF NEUROPHYSIOLOGY, 2001, 86 (01) : 528 - 532
  • [46] HYPERPOLARIZING RESPONSES TO APPLICATION OF GLUTAMATE IN HIPPOCAMPAL CA1 PYRAMIDAL NEURONS
    TAUBE, JS
    SCHWARTZKROIN, PA
    NEUROSCIENCE LETTERS, 1987, 78 (01) : 85 - 90
  • [47] Effects of Estrogen on the Biophysical Properties of Hippocampal CA1 Pyramidal Neurons
    Wu, Wendy W.
    Adelman, John P.
    Maylie, James
    JOURNAL OF WOMENS HEALTH, 2008, 17 (08) : 1237 - 1238
  • [48] Altered Calcium Metabolism in Aging CA1 Hippocampal Pyramidal Neurons
    Oh, M. Matthew
    Oliveira, Fernando A.
    Waters, Jack
    Disterhoft, John F.
    JOURNAL OF NEUROSCIENCE, 2013, 33 (18): : 7905 - 7911
  • [49] Ventral Hippocampal CA1 Pyramidal Neurons Encode Nociceptive Information
    Wang, Yue
    Liu, Naizheng
    Ma, Longyu
    Yue, Lupeng
    Cui, Shuang
    Liu, Feng-Yu
    Yi, Ming
    Wan, You
    NEUROSCIENCE BULLETIN, 2024, 40 (02) : 201 - 217
  • [50] Electrophysiological actions of hemoglobin on rat hippocampal CA1 pyramidal neurons
    Yip, S
    Ip, JKH
    Sastry, BR
    BRAIN RESEARCH, 1996, 713 (1-2) : 134 - 142